Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Acyclic vertex coloring of graphs of maximum degree six

Yancai Zhao^a, Lianying Miao^{b,*}, Shiyou Pang^b, Wenyao Song^b

^a Wuxi City College of Vocational Technology, Wuxi, Jiangsu, 221116, PR China

^b School of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, PR China

ARTICLE INFO

Received in revised form 22 January 2014

ABSTRACT

In this paper, we prove that every graph with maximum degree six is acyclically 10colorable, thus improving the main result of Hervé Hocquard (2011). © 2014 Published by Elsevier B.V.

Keywords: Graph coloring Bounded degree graphs Acyclic coloring

Accepted 27 January 2014 Available online 4 March 2014

Article history:

Received 31 July 2013

1. Introduction

A proper vertex coloring of a graph G = (V, E) is an assignment of colors to the vertices of G such that two adjacent vertices do not use the same color. A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. The acyclic chromatic number of G, denoted by $\chi_a(G)$, is the smallest integer k such that G is acyclically k-colorable. Acyclic colorings were introduced by Grünbaum [10]. The following are some results about acyclic colorings of graphs.

Theorem 1.1 ([10]). Every planar graph is acyclically 9-colorable.

Theorem 1.2 ([4]). Every planar graph is acyclically 5-colorable.

This bound is tight since there exist 4-regular planar graphs [10] which are not acyclically 4-colorable.

Theorem 1.3 ([2]). Every graph with maximum degree Δ can be acyclically colored using $O(\Delta(G)^{4/3})$ colors.

Theorem 1.4 ([1]). Every graph with maximum degree Δ can be acyclically colored using $\Delta(\Delta - 1) + 2$ colors.

For graphs with maximum degree six, there are the following results.

Theorem 1.5 ([18]). Every graph of maximum degree 6 can be acyclically colored with 12 colors.

Theorem 1.6 ([11]). Every graph of maximum degree 6 can be acyclically colored with 11 colors.

Other results about the acyclic coloring of graphs can be seen in [1,5,8,6,7,9–16,19]. Here we improve Theorem 1.6 by proving that.

Theorem 1.7. Every graph with maximum degree six is acyclically 10-colorable.

CrossMark

^{*} Corresponding author.

E-mail addresses: zhaoyc69@126.com (Y. Zhao), miaolianying@cumt.edu.cn (L. Miao).

http://dx.doi.org/10.1016/j.disc.2014.01.022 0012-365X/© 2014 Published by Elsevier B.V.

Fig. 1. An illustration of $N_C(u)$, $n_C(u)$, $C_{\varphi}(u)$ and $c_{\varphi}(u)$.

This theorem also answers the second question posed by Hervé Hocquard [11].

We now introduce the notations (some of them are first given in [11]) and use the standard graph theory terminology [17] not defined here.

Let G = (V(G), E(G)), and $v \in V(G)$. We use N(v) and d(v) to denote the set of the neighbors and the degree of v in G respectively.

A partial acyclic coloring φ of *G* is an assignment of colors to a subset *U* of *V*(*G*) such that φ is an acyclic coloring of *G*[*U*]. Let φ be a partial acyclic coloring of *G* with the color set *C* and the colored subset $U \subseteq V(G)$ and let *v* be an uncolored vertex of *G*. We say that a color $c \in C$ is available for *v* if no neighbor of *v* is colored *c*. We say that a color $c \in C$ is feasible for *v* if it is available for *v* and coloring *v* with *c* results in a partial acyclic coloring of *G*. We say that a color $c \in C$ is no-feasible for *v* if it is available for *v* and coloring *v* with *c* results in bicolored cycles in *G*. Let F_v and NF_v denote the set of feasible and no-feasible colors for *v*. For a vertex $u \in V(G)$ (colored or uncolored), we denote the set and the number of colored neighbors of *u* by $N_C(u) = N(u) \cap U$ and $n_C(u) = |N_C(u)|$ respectively. We denote by $C_{\varphi}(u)$ the set of colors used by vertices in $N_C(u)$ and $c_{\varphi}(u) = |C_{\varphi}(u)|$. For example, in Fig. 1, $N_C(u) = \{v_1, v_2, v_3, v_4, v_5\}$, $n_C(u) = 5$, $C_{\varphi}(u) = \{1, 2, 3, 4\}$ and $c_{\varphi}(u) = 4$.

Finally, we denote by $\Delta(G)$, the maximum degree of a graph *G*. We assume that the graphs in this paper are connected. Let $C = \{1, 2, ..., 10\}$.

2. Main result

It is known that [3, P34] every graph of maximum degree at most Δ is an induced subgraph of a Δ -regular graph, and it is sufficient to consider 6-regular connected graphs in this paper.

The following definition is first given in [11].

Let G be a Δ -regular connected graph. A good spanning tree of G is a spanning tree T such that T contains a vertex adjacent to $\Delta - 1$ leaves.

Lemma 1 ([11]). Every regular connected graph admits a good spanning tree.

Remark 1. The idea of the proof of Theorem 1.7 is mainly from [11]. We make more careful analysis and use one new technique of constructing bipartite graphs to reduce the number of colors needed to 10.

Proof of Theorem 1.7. Let *G* be a 6-regular connected graph.

Let *T* be a good spanning tree of *G*. Let x_n be a vertex adjacent to five leaves x_1, x_2, x_3, x_4, x_5 in *T*. We order the vertices of *G* from x_1 to x_n according to a post-order walk of *T*. First, we color x_1, x_2, x_3, x_4, x_5 with five distinct colors. Then we will successively color $x_6, x_7, \ldots, x_{n-1}$ while the colors of x_1, x_2, x_3, x_4, x_5 will never be changed. Finally, we color x_n .

Suppose that we have colored $x_1, x_2, ..., x_{i-1}$ ($6 \le i \le n-1$). Let φ be an acyclic 10-coloring of $G_{i-1} = G[x_1, x_2, ..., x_{i-1}]$. Now we color $x_i = u$. Since u is adjacent to at least one of $x_{i+1}, ..., x_n$, we have $n_C(u) \le 5$. W.l.o.g. assume that $n_C(u) = 5$. Let $N_C(u) = \{v_1, v_2, v_3, v_4, v_5\}$. For $1 \le i, j, k \le 5$, let $N(v_i) \setminus \{u\} = \{v_i^{j,k} | 1 \le j \le 5\}$ and $N(v_i^j) \setminus \{v_i\} = \{v_i^{j,k} | 1 \le k \le 5\}$. Let $A = \{x_1, x_2, x_3, x_4, x_5\}$. (See Fig. 2.)

Since $u \neq x_n$, we have the following claim.

Claim 1. If $v \in N(u)$ and $n_{\mathcal{C}}(v) = 5$, then $v \notin A$. If $v \notin N(u)$ and $n_{\mathcal{C}}(v) = 6$, then $v \notin A$.

Construction. We construct a bipartite graph *H* with the bipartition (X, Y) such that $X = \{x | x \in N_C(u) \text{ and there is a vertex } x' \in N_C(u) \text{ such that } \varphi(x) = \varphi(x') \text{ and } x \neq x'\}$ and $Y = NF_u$. For any $x \in X$ and $y \in Y$, x is adjacent to y in *H* iff assigning u the color y will result in a bicolored cycle passing through u and x. It is easy to see that $d_H(y) \ge 2$ for any $y \in Y$ if $X \neq \phi$ and $Y \neq \phi$.

Now we consider the following five cases.

Case 1. $c_{\omega}(u) = 5$. Then there remain five colors for u.

Case 2. $c_{\varphi}(u) = 4$. W.l.o.g. assume that $\varphi(v_1) = \varphi(v_2) = 1$, $\varphi(v_3) = 2$, $\varphi(v_4) = 3$, $\varphi(v_5) = 4$. We can color u with a color in $C \setminus \{C_{\varphi}(u) \cup [C_{\varphi}(v_1) \cap C_{\varphi}(v_2)]\}$ (which is not ϕ).

Download English Version:

https://daneshyari.com/en/article/4647199

Download Persian Version:

https://daneshyari.com/article/4647199

Daneshyari.com