Acyclic vertex coloring of graphs of maximum degree six

Yancai Zhao ${ }^{\text {a }}$, Lianying Miao ${ }^{\text {b,* }}$, Shiyou Pang ${ }^{\text {b }}$, Wenyao Song ${ }^{\text {b }}$
${ }^{\text {a }}$ Wuxi City College of Vocational Technology, Wuxi, Jiangsu, 221116, PR China
${ }^{\mathrm{b}}$ School of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, PR China

A R T I C L E INFO

Article history:

Received 31 July 2013
Received in revised form 22 January 2014
Accepted 27 January 2014
Available online 4 March 2014

Keywords:
Graph coloring
Bounded degree graphs
Acyclic coloring

Abstract

In this paper, we prove that every graph with maximum degree six is acyclically $10-$ colorable, thus improving the main result of Hervé Hocquard (2011). © 2014 Published by Elsevier B.V.

1. Introduction

A proper vertex coloring of a graph $G=(V, E)$ is an assignment of colors to the vertices of G such that two adjacent vertices do not use the same color. A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. The acyclic chromatic number of G, denoted by $\chi_{a}(G)$, is the smallest integer k such that G is acyclically k-colorable. Acyclic colorings were introduced by Grünbaum [10]. The following are some results about acyclic colorings of graphs.

Theorem 1.1 ([10]). Every planar graph is acyclically 9-colorable.
Theorem 1.2 ([4]). Every planar graph is acyclically 5-colorable.
This bound is tight since there exist 4-regular planar graphs [10] which are not acyclically 4-colorable.
Theorem 1.3 ([2]). Every graph with maximum degree Δ can be acyclically colored using $O\left(\Delta(G)^{4 / 3}\right)$ colors.
Theorem 1.4 ([1]). Every graph with maximum degree Δ can be acyclically colored using $\Delta(\Delta-1)+2$ colors.
For graphs with maximum degree six, there are the following results.
Theorem 1.5 ([18]). Every graph of maximum degree 6 can be acyclically colored with 12 colors.
Theorem 1.6 ([11]). Every graph of maximum degree 6 can be acyclically colored with 11 colors.
Other results about the acyclic coloring of graphs can be seen in [1,5,8,6,7,9-16,19]. Here we improve Theorem 1.6 by proving that.

Theorem 1.7. Every graph with maximum degree six is acyclically 10-colorable.

[^0]

Fig. 1. An illustration of $N_{C}(u), n_{C}(u), C_{\varphi}(u)$ and $c_{\varphi}(u)$.

This theorem also answers the second question posed by Hervé Hocquard [11].
We now introduce the notations (some of them are first given in [11]) and use the standard graph theory terminology [17] not defined here.

Let $G=(V(G), E(G))$, and $v \in V(G)$. We use $N(v)$ and $d(v)$ to denote the set of the neighbors and the degree of v in G respectively.

A partial acyclic coloring φ of G is an assignment of colors to a subset U of $V(G)$ such that φ is an acyclic coloring of $G[U]$. Let φ be a partial acyclic coloring of G with the color set C and the colored subset $U \subseteq V(G)$ and let v be an uncolored vertex of G. We say that a color $c \in C$ is available for v if no neighbor of v is colored c. We say that a color $c \in C$ is feasible for v if it is available for v and coloring v with c results in a partial acyclic coloring of G. We say that a color $c \in C$ is no-feasible for v if it is available for v and coloring v with c results in bicolored cycles in G. Let F_{v} and $N F_{v}$ denote the set of feasible and no-feasible colors for v. For a vertex $u \in V(G)$ (colored or uncolored), we denote the set and the number of colored neighbors of u by $N_{C}(u)=N(u) \cap U$ and $n_{C}(u)=\left|N_{C}(u)\right|$ respectively. We denote by $C_{\varphi}(u)$ the set of colors used by vertices in $N_{C}(u)$ and $c_{\varphi}(u)=\left|C_{\varphi}(u)\right|$. For example, in Fig. $1, N_{C}(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, n_{C}(u)=5, C_{\varphi}(u)=\{1,2,3,4\}$ and $c_{\varphi}(u)=4$.

Finally, we denote by $\Delta(G)$, the maximum degree of a graph G. We assume that the graphs in this paper are connected. Let $C=\{1,2, \ldots, 10\}$.

2. Main result

It is known that [3, P34] every graph of maximum degree at most Δ is an induced subgraph of a Δ-regular graph, and it is sufficient to consider 6-regular connected graphs in this paper.

The following definition is first given in [11].
Let G be a Δ-regular connected graph. A good spanning tree of G is a spanning tree T such that T contains a vertex adjacent to $\Delta-1$ leaves.

Lemma 1 ([11]). Every regular connected graph admits a good spanning tree.
Remark 1. The idea of the proof of Theorem 1.7 is mainly from [11]. We make more careful analysis and use one new technique of constructing bipartite graphs to reduce the number of colors needed to 10 .

Proof of Theorem 1.7. Let G be a 6-regular connected graph.
Let T be a good spanning tree of G. Let x_{n} be a vertex adjacent to five leaves $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ in T. We order the vertices of G from x_{1} to x_{n} according to a post-order walk of T. First, we color $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ with five distinct colors. Then we will successively color $x_{6}, x_{7}, \ldots, x_{n-1}$ while the colors of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ will never be changed. Finally, we color x_{n}.

Suppose that we have colored $x_{1}, x_{2}, \ldots, x_{i-1}(6 \leq i \leq n-1)$. Let φ be an acyclic 10-coloring of $G_{i-1}=$ $G\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]$. Now we color $x_{i}=u$. Since u is adjacent to at least one of x_{i+1}, \ldots, x_{n}, we have $n_{C}(u) \leq 5$. W.l.o.g. assume that $n_{C}(u)=5$. Let $N_{C}(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. For $1 \leq i, j, k \leq 5$, let $N\left(v_{i}\right) \backslash\{u\}=\left\{v_{i}^{j} \mid 1 \leq j \leq 5\right\}$ and $N\left(v_{i}^{j}\right) \backslash\left\{v_{i}\right\}=\left\{v_{i}^{j, k} \mid 1 \leq k \leq 5\right\}$. Let $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. (See Fig. 2.)

Since $u \neq x_{n}$, we have the following claim.
Claim 1. If $v \in N(u)$ and $n_{C}(v)=5$, then $v \notin A$. If $v \notin N(u)$ and $n_{C}(v)=6$, then $v \notin A$.
Construction. We construct a bipartite graph H with the bipartition (X, Y) such that $X=\left\{x \mid x \in N_{C}(u)\right.$ and there is a vertex $x^{\prime} \in N_{C}(u)$ such that $\varphi(x)=\varphi\left(x^{\prime}\right)$ and $\left.x \neq x^{\prime}\right\}$ and $Y=N F_{u}$. For any $x \in X$ and $y \in Y, x$ is adjacent to y in H iff assigning u the color y will result in a bicolored cycle passing through u and x. It is easy to see that $d_{H}(y) \geq 2$ for any $y \in Y$ if $X \neq \phi$ and $Y \neq \phi$.

Now we consider the following five cases.
Case 1. $c_{\varphi}(u)=5$. Then there remain five colors for u.
Case 2. $c_{\varphi}(u)=4$. W.l.o.g. assume that $\varphi\left(v_{1}\right)=\varphi\left(v_{2}\right)=1, \varphi\left(v_{3}\right)=2, \varphi\left(v_{4}\right)=3, \varphi\left(v_{5}\right)=4$. We can color u with a color in $C \backslash\left\{C_{\varphi}(u) \cup\left[C_{\varphi}\left(v_{1}\right) \cap C_{\varphi}\left(v_{2}\right)\right]\right\}$ (which is not ϕ).

https://daneshyari.com/en/article/4647199

Download Persian Version:
https://daneshyari.com/article/4647199

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zhaoyc69@126.com (Y. Zhao), miaolianying@cumt.edu.cn (L. Miao).

