On Laplacian energy of graphs

Kinkar Ch. Das, Seyed Ahmad Mojallal
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history:

Received 9 August 2013
Received in revised form 18 February 2014
Accepted 20 February 2014
Available online 5 March 2014

Keywords:

Graph
Laplacian matrix
Laplacian eigenvalues
Laplacian energy
Laplacian-energy-like invariant

ABSTRACT

Let G be a graph with n vertices and m edges. Also let $\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}, \mu_{n}=0$ be the eigenvalues of the Laplacian matrix of graph G. The Laplacian energy of the graph G is defined as

$$
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

In this paper, we present some lower and upper bounds for $L E$ of graph G in terms of n, the number of edges m and the maximum degree Δ. Also we give a Nordhaus-Gaddum-type result for Laplacian energy of graphs. Moreover, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant of graphs.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G),|E(G)|=m$. Let d_{i} be the degree of the vertex v_{i} for $i=1,2, \ldots, n$. The maximum vertex degree is denoted by Δ. Let $\mathbf{A}(G)$ be the (0,1)-adjacency matrix of G and $\mathbf{D}(G)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is $\mathbf{L}(G)=\mathbf{D}(G)-\mathbf{A}(G)$. This matrix has nonnegative eigenvalues $n \geq \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0$. Denote by $\operatorname{Spec}(G)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ the spectrum of $\mathbf{L}(G)$, i.e., the Laplacian spectrum of G. When more than one graph is under consideration, then we write $\mu_{i}(G)$ instead of μ_{i}.

As well known [31],

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i}=2 m \tag{1}
\end{equation*}
$$

The motivation for Laplacian energy comes from graph energy [11,12,21]. The Laplacian energy of the graph G is defined as [26]

$$
\begin{equation*}
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| . \tag{2}
\end{equation*}
$$

For its basic properties, including various lower and upper bounds, see [2,33,34,36-38,41,42]. Laplacian graph energy is a broad measure of graph complexity. Song et al. [35] have introduced component-wise Laplacian graph energy, as a complexity measure useful to filter image description hierarchies.

[^0]Let $\sigma(1 \leq \sigma \leq n-1)$ be the largest integer such that

$$
\begin{equation*}
\mu_{\sigma} \geq \frac{2 m}{n} \tag{3}
\end{equation*}
$$

Then from $[9,17,18]$, we have

$$
\begin{align*}
L E(G) & =\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \\
& =2 S_{\sigma}(G)-\frac{4 m \sigma}{n}, \tag{4}
\end{align*}
$$

where

$$
S_{\sigma}(G)=\sum_{i=1}^{\sigma} \mu_{i} .
$$

For a subset W of $V(G)$, let $G-W$ be the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If $W=\left\{v_{i}\right\}$, then the subgraph $G-W$ will be written as $G-v_{i}$ for short. For any two nonadjacent vertices v_{i} and v_{j} in graph G, we use $G+v_{i} v_{j}$ to denote the graph obtained from adding a new edge $v_{i} v_{j}$ to graph G. As usual, K_{n} and $K_{1, n-1}$, denote, respectively, the complete graph and the star on n vertices. For other undefined notations and terminology from graph theory, the readers are referred to [1].
The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we present some lower and upper bounds on Laplacian energy $L E(G)$ of graph G. In Section 4, we give Nordhaus-Gaddum-type result for Laplacian energy of graphs. In Section 5, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant of graphs.

2. Preliminaries

In this section, we shall list some previously known results that will be needed in the next two sections.
Lemma 2.1 ([15,19]). Let A and B be two real symmetric matrices of size n. Then for any $1 \leq k \leq n$,

$$
\sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k} \lambda_{i}(A)+\sum_{i=1}^{k} \lambda_{i}(B) .
$$

Lemma 2.2 ([3]). Let G be a graph on vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then

$$
\begin{equation*}
\mu_{1}(G) \leq \max _{v_{i} v_{j} \in E(G)}\left|N_{G}\left(v_{i}\right) \cup N_{G}\left(v_{j}\right)\right|, \tag{5}
\end{equation*}
$$

where $N_{G}\left(v_{i}\right)$ is the neighbor set of vertex $v_{i} \in V(G)$ and $|X|$ is the cardinality of the set X. This upper bound for $\mu_{1}(G)$ does not exceed n.

Lemma 2.3 ([31]). Let G be a graph on n vertices which has at least one edge. Then

$$
\begin{equation*}
\mu_{1} \geq \Delta+1 \tag{6}
\end{equation*}
$$

Moreover, if G is connected, then the equality holds in (6) if and only if $\Delta=n-1$.
Lemma 2.4 ([28]). Let G be a graph of order n. Then $\mu_{1}(G) \leq n$ with equality holding if and only if \bar{G} is disconnected, where \bar{G} is the complement of the graph G.

Lemma 2.5 ([16]). Let $G\left(\nexists K_{n}\right)$ be a graph of order n. Then $\mu_{n-1}(G) \leq \delta$, where δ is the minimum degree in G.
Lemma 2.6 ([31]). Let G be a graph with Laplacian spectrum $\left\{0=\mu_{n}, \mu_{n-1}, \ldots, \mu_{2}, \mu_{1}\right\}$. Then the Laplacian spectrum of \bar{G} is $\left\{0, n-\mu_{1}, n-\mu_{2}, \ldots, n-\mu_{n-2}, n-\mu_{n-1}\right\}$, where \bar{G} is the complement of the graph G.

Lemma 2.7 ([6]). Let G be a connected graph with $n \geq 3$ vertices. Then $\mu_{2}=\mu_{3}=\cdots=\mu_{n-1}$ if and only if $G \cong K_{n}$ or $G \cong K_{1, n-1}$ or $G \cong K_{\Delta, \Delta}$.

Lemma 2.8 ([5]). Let $G=(V, E)$ be a graph with a vertex subset $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ having the same set of neighbors $\left\{v_{k+1}, v_{k+2}, \ldots, v_{k+N}\right\}$, where $V=\left\{v_{1}, \ldots, v_{k}, \ldots, v_{k+N}, \ldots, v_{n}\right\}$.Also let $E^{+}=E \cup E^{\prime}$, where $E^{\prime} \subseteq V^{\prime} \times V^{\prime}$. If $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

https://daneshyari.com/en/article/4647204

Download Persian Version:

https://daneshyari.com/article/4647204

Daneshyari.com

[^0]: E-mail addresses: kinkardas2003@googlemail.com, kinkar@lycos.com (K.C. Das), ahmad_mojalal@yahoo.com (S.A. Mojallal).
 http://dx.doi.org/10.1016/j.disc.2014.02.017
 0012-365X/© 2014 Elsevier B.V. All rights reserved.

