Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On Laplacian energy of graphs

Kinkar Ch. Das, Seyed Ahmad Mojallal

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received 9 August 2013 Received in revised form 18 February 2014 Accepted 20 February 2014 Available online 5 March 2014

Keywords: Graph Laplacian matrix Laplacian eigenvalues Laplacian energy Laplacian-energy-like invariant

Let *G* be a graph with *n* vertices and *m* edges. Also let $\mu_1, \mu_2, ..., \mu_{n-1}, \mu_n = 0$ be the eigenvalues of the Laplacian matrix of graph *G*. The Laplacian energy of the graph *G* is defined as

$$LE = LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

In this paper, we present some lower and upper bounds for *LE* of graph *G* in terms of *n*, the number of edges *m* and the maximum degree Δ . Also we give a Nordhaus–Gaddum-type result for Laplacian energy of graphs. Moreover, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant of graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G), |E(G)| = m. Let d_i be the degree of the vertex v_i for i = 1, 2, ..., n. The maximum vertex degree is denoted by Δ . Let $\mathbf{A}(G)$ be the (0, 1)-adjacency matrix of G and $\mathbf{D}(G)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is $\mathbf{L}(G) = \mathbf{D}(G) - \mathbf{A}(G)$. This matrix has nonnegative eigenvalues $n \ge \mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Denote by $Spec(G) = \{\mu_1, \mu_2, ..., \mu_n\}$ the spectrum of $\mathbf{L}(G)$, i.e., the Laplacian spectrum of G. When more than one graph is under consideration, then we write $\mu_i(G)$ instead of μ_i .

As well known [31],

$$\sum_{i=1}^{n} \mu_i = 2m. \tag{1}$$

The motivation for Laplacian energy comes from graph energy [11,12,21]. The Laplacian energy of the graph *G* is defined as [26]

$$LE = LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.$$
 (2)

For its basic properties, including various lower and upper bounds, see [2,33,34,36–38,41,42]. Laplacian graph energy is a broad measure of graph complexity. Song et al. [35] have introduced component-wise Laplacian graph energy, as a complexity measure useful to filter image description hierarchies.

http://dx.doi.org/10.1016/j.disc.2014.02.017 0012-365X/© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: kinkardas2003@googlemail.com, kinkar@lycos.com (K.C. Das), ahmad_mojalal@yahoo.com (S.A. Mojallal).

Let $\sigma (1 \le \sigma \le n - 1)$ be the largest integer such that

$$\mu_{\sigma} \ge \frac{2m}{n}.$$
(3)

Then from [9,17,18], we have

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$
$$= 2S_{\sigma}(G) - \frac{4m\sigma}{n},$$

where

$$S_{\sigma}(G) = \sum_{i=1}^{\sigma} \mu_i.$$

For a subset W of V(G), let G - W be the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If $W = \{v_i\}$, then the subgraph G - W will be written as $G - v_i$ for short. For any two nonadjacent vertices v_i and v_j in graph G, we use $G + v_i v_j$ to denote the graph obtained from adding a new edge $v_i v_j$ to graph G. As usual, K_n and $K_{1, n-1}$, denote, respectively, the complete graph and the star on n vertices. For other undefined notations and terminology from graph theory, the readers are referred to [1].

The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we present some lower and upper bounds on Laplacian energy LE(G) of graph G. In Section 4, we give Nordhaus–Gaddum-type result for Laplacian energy of graphs. In Section 5, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant of graphs.

2. Preliminaries

In this section, we shall list some previously known results that will be needed in the next two sections.

Lemma 2.1 ([15,19]). Let A and B be two real symmetric matrices of size n. Then for any $1 \le k \le n$,

$$\sum_{i=1}^k \lambda_i(A+B) \leq \sum_{i=1}^k \lambda_i(A) + \sum_{i=1}^k \lambda_i(B).$$

Lemma 2.2 ([3]). Let *G* be a graph on vertex set $V(G) = \{v_1, v_2, ..., v_n\}$. Then

$$\mu_1(G) \le \max_{v_i v_j \in E(G)} |N_G(v_i) \cup N_G(v_j)|,$$
(5)

where $N_G(v_i)$ is the neighbor set of vertex $v_i \in V(G)$ and |X| is the cardinality of the set X. This upper bound for $\mu_1(G)$ does not exceed n.

Lemma 2.3 ([31]). Let G be a graph on n vertices which has at least one edge. Then

$$\mu_1 \geq \Delta + 1.$$

Moreover, if G is connected, then the equality holds in (6) if and only if $\Delta = n - 1$.

Lemma 2.4 ([28]). Let G be a graph of order n. Then $\mu_1(G) \leq n$ with equality holding if and only if \overline{G} is disconnected, where \overline{G} is the complement of the graph G.

Lemma 2.5 ([16]). Let $G(\not\cong K_n)$ be a graph of order n. Then $\mu_{n-1}(G) \leq \delta$, where δ is the minimum degree in G.

Lemma 2.6 ([31]). Let *G* be a graph with Laplacian spectrum $\{0 = \mu_n, \mu_{n-1}, \dots, \mu_2, \mu_1\}$. Then the Laplacian spectrum of \overline{G} is $\{0, n - \mu_1, n - \mu_2, \dots, n - \mu_{n-2}, n - \mu_{n-1}\}$, where \overline{G} is the complement of the graph *G*.

Lemma 2.7 ([6]). Let G be a connected graph with $n \ge 3$ vertices. Then $\mu_2 = \mu_3 = \cdots = \mu_{n-1}$ if and only if $G \cong K_n$ or $G \cong K_{1,n-1}$ or $G \cong K_{\Delta,\Delta}$.

Lemma 2.8 ([5]). Let G = (V, E) be a graph with a vertex subset $V' = \{v_1, v_2, \ldots, v_k\}$ having the same set of neighbors $\{v_{k+1}, v_{k+2}, \ldots, v_{k+N}\}$, where $V = \{v_1, \ldots, v_k, \ldots, v_{k+N}, \ldots, v_n\}$. Also let $E^+ = E \cup E'$, where $E' \subseteq V' \times V'$. If G' = (V', E')

(4)

(6)

Download English Version:

https://daneshyari.com/en/article/4647204

Download Persian Version:

https://daneshyari.com/article/4647204

Daneshyari.com