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1. Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v1, va, ..., vy} and edge set E(G), |[E(G)| = m. Let d; be the

degree of the vertex v; fori = 1, 2, ..., n. The maximum vertex degree is denoted by A. Let A(G) be the (0, 1)-adjacency
matrix of G and D(G) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is L(G) = D(G) — A(G). This matrix
has nonnegative eigenvaluesn > 1 > @y > --- > u, = 0. Denote by Spec(G) = {1, 2, - .., iy} the spectrum of L(G),

i.e., the Laplacian spectrum of G. When more than one graph is under consideration, then we write 1;(G) instead of ;.
As well known [31],

Z/,Li =2m. (1)
i=1

The motivation for Laplacian energy comes from graph energy [11,12,21]. The Laplacian energy of the graph G is defined
as [26]
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For its basic properties, including various lower and upper bounds, see [2,33,34,36-38,41,42]. Laplacian graph energy is
a broad measure of graph complexity. Song et al. [35] have introduced component-wise Laplacian graph energy, as a
complexity measure useful to filter image description hierarchies.
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Let o (1 <o < n — 1) be the largest integer such that

Ko = —- (3)
n

Then from [9,17,18], we have

n
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where

52(6) =) i
i=1

For a subset W of V(G), let G — W be the subgraph of G obtained by deleting the vertices of W and the edges incident

with them. If W = {v;}, then the subgraph G — W will be written as G — v; for short. For any two nonadjacent vertices v;
and v; in graph G, we use G + v;v; to denote the graph obtained from adding a new edge v;v; to graph G. As usual, K, and
K4, n—1, denote, respectively, the complete graph and the star on n vertices. For other undefined notations and terminology
from graph theory, the readers are referred to [1].
The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we present
some lower and upper bounds on Laplacian energy LE (G) of graph G. In Section 4, we give Nordhaus-Gaddum-type result for
Laplacian energy of graphs. In Section 5, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant
of graphs.

2. Preliminaries
In this section, we shall list some previously known results that will be needed in the next two sections.

Lemma 2.1 ([15,19]). Let A and B be two real symmetric matrices of size n. Then forany 1 < k <n,
k k k
D kHA+B) <Y MA) + D M(B).
i=1 i=1 i=1

Lemma 2.2 ([3]). Let G be a graph on vertex set V(G) = {vq, va, ..., v,}. Then
11(G) < max |Ng(v;) U Ng(vy)l, (5)
vy €E(G)

where N¢(v;) is the neighbor set of vertex v; € V(G) and |X| is the cardinality of the set X. This upper bound for (1(G) does not
exceed n.

Lemma 2.3 ([31]). Let G be a graph on n vertices which has at least one edge. Then
mi= A+ 1. (6)
Moreover, if G is connected, then the equality holds in (6) ifand only if A =n — 1.

Lemma 2.4 ([28]). Let G be a graph of order n. Then 11(G) < n with equality holding if and only if G is disconnected, where G
is the complement of the graph G.

Lemma 2.5 ([16]). Let G(2 K,,) be a graph of order n. Then p,_1(G) < 8, where § is the minimum degree in G.

Lemma 2.6 ([31]). Let G be a graph with Laplacian spectrum {0 =, a1, ..., h2, jt1). Then the Laplacian spectrum of G is
{0,n—pwy,n— g, ..., — Wn_2, N — Un_1}, Where G is the complement of the graph G.

Lemma 2.7 ([6]). Let G be a connected graph with n > 3 vertices. Then p; = 3 = --- = up—1 ifand only if G = K, or
c= Kl,n—l orG= KA,A-

Lemma 2.8 ([5]). Let G = (V, E) be a graph with a vertex subset V' = {vy, v,, ..., v} having the same set of neighbors
{Vki1s Vg2, - Ukaen), WhereV ={vy, ..., Vg, ..., Uggn, ..., Up). Alsolet EY = EUE', whereE’ C V' xV'.If G = (V',E)
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