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a b s t r a c t

This paper studies groups of maximal size acting harmonically on a finite graph. Our main
result states that these maximal graph groups are exactly the finite quotients of the modu-
lar group Γ =


x, y | x2 = y3 = 1


of size at least 6. This characterizationmay be viewed as

a discrete analogue of the description of Hurwitz groups as finite quotients of the (2, 3, 7)-
triangle group in the context of holomorphic group actions on Riemann surfaces. In fact, as
an immediate consequence of our result, every Hurwitz group is a maximal graph group,
and the final section of the paper establishes a direct connection between maximal graphs
and Hurwitz surfaces via the theory of combinatorial maps.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many recent papers have explored analogies between Riemann surfaces and finite graphs (e.g. [2–4,6–8,14,15,17]). In-
spired by the Accola–Maclachlan [1,21] and Hurwitz [18] genus bounds for holomorphic group actions on compact Riemann
surfaces, we introduced harmonic group actions on finite graphs in [14], and established sharp linear genus bounds for the
maximal size of such actions. As noted in the introduction to [14], it is an interesting problem to characterize the groups
and graphs that achieve the upper bound 6(g −1). Suchmaximal groups and graphsmay be viewed as graph-theoretic ana-
logues of Hurwitz groups and surfaces—those compact Riemann surfaces S of genus g ≥ 2 such that Aut(S) has maximal
size 84(g − 1). This paper provides a description of the maximal graphs and groups (Theorem 1 and Proposition 12), while
also establishing connections between the recent theory of harmonic group actions and the well-studied topics of trivalent
symmetric graphs and regular combinatorial maps.

The investigation of Hurwitz groups has been a rich and active area of research, andmuch is known about their classifica-
tion including a complete analysis of the 26 sporadic simple groups: 12 of them (including theMonster!) are Hurwitz, while
the other 14 are not (see [9,10] for an overview). One starting point for work on Hurwitz groups is the following generation
result: a finite group G is a Hurwitz group if and only if it is a non-trivial quotient of the (2, 3, 7)-triangle group ∆ with
presentation

∆ =

x, y | x2 = y3 = (xy)7 = 1


.

That is: the Hurwitz groups are exactly the finite groups generated by an element of order 2 and an element of order 3 such
that their product has order 7. The connection between the abstract group ∆ and Hurwitz groups comes from the fact that
Hurwitz surfaces arise as branched covers of the thrice-punctured Riemann sphere with special ramification. Such covers
are nicely classified by the fundamental group of the punctured sphere, which is a free group on two generators.

The main result of this paper is an analogous generation result for maximal graph groups—those finite groups of size
6(g − 1) that act harmonically on a finite graph of genus g ≥ 2:

E-mail address: scott.corry@lawrence.edu.

http://dx.doi.org/10.1016/j.disc.2014.12.016
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.12.016
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.12.016&domain=pdf
mailto:scott.corry@lawrence.edu
http://dx.doi.org/10.1016/j.disc.2014.12.016


S. Corry / Discrete Mathematics 338 (2015) 784–792 785

Theorem 1. A finite group G is a maximal graph group if and only if |G| ≥ 6 and G is a quotient of the modular group Γ with
presentation

Γ =

x, y | x2 = y3 = 1


.

That is: the maximal graph groups are exactly the finite groups generated by an element of order 2 and an element of order
3. As an immediate corollary, we have:

Corollary 2. Every Hurwitz group is a maximal graph group.

As in the case of Hurwitz groups, the connection between the modular group Γ and maximal graph groups comes from
the fact that maximal graphs occur as harmonic branched covers of trees (genus 0 graphs) with special ramification (Propo-
sition 11). In order to classify such covers in general, we developed a harmonic Galois theory for finite graphs in [15], and
the resulting concrete description of harmonic branched covers is the main tool used in the proof of Theorem 1, which
we present in Section 3. The proof of Theorem 1 leads immediately to Proposition 12, which provides a close connection
between maximal graphs and trivalent symmetric graphs of type 1’ studied by Djoković and Miller in [16].

The relation between Riemann surfaces and finite graphs explored in this paper is largely analogical, rather than arising
from a precise correspondence. However, there are a variety of direct connections between Riemann surfaces (and more
generally algebraic curves) and finite graphs (see e.g. [2,5–7,19]). Of particular interest for us is a portion of the well-
established theory of combinatorial maps, whereby the specification of a cyclic ordering of the edges incident to each vertex
of a finite graph determines a 2-cell embedding of the graph in a compact Riemann surface. In the final section of this paper,
we show that our theory meshes well with this construction in the following sense: if G is a maximal graph group, then (by
Proposition 12) G acts maximally on a trivalent graph Y0. Moreover, the G-action endows Y0 with a cyclic ordering of the
three edges at each vertex, and G acts as a group of holomorphic automorphisms of the corresponding Riemann surface.
Moreover, if G is actually a Hurwitz group, then the resulting surface is a Hurwitz surface with automorphism group G.

2. Harmonic group actions

In this section, we briefly review some of the definitions and results from [4,14,15]. To begin, by a graphwemean a finite
multi-graph without loop edges: two vertices may be connected by multiple edges, but no vertex has an edge to itself. We
denote the (finite) vertex-set of a graph X by V (X), and the (finite) edge-set by E(X). For a vertex x ∈ V (X), we write x(1)
for the subgraph of X induced by the edges incident to x:

V (x(1)) := {x} ∪ {w ∈ V (X) | w is adjacent to x}
E(x(1)) := {e ∈ E(X) | e is incident to x}.

The genus1 of a connected graph X is the rank of its first Betti homology group: g(X) := |E(X)| − |V (X)| + 1.

Definition 3. A morphism of graphs φ : Y → X is a function φ : V (Y ) ∪ E(Y ) → V (X) ∪ E(X) mapping vertices to ver-
tices and such that for each edge e ∈ E(Y ) with endpoints y1 ≠ y2, either φ(e) ∈ E(X) has endpoints φ(y1) ≠ φ(y2), or
φ(e) = φ(y1) = φ(y2) ∈ V (X). In the latter case, we say that the edge e is φ-vertical. The morphism φ is degenerate at
y ∈ V (Y ) if φ(y(1)) = {φ(y)}, i.e. if φ collapses a neighborhood of y to a vertex of X . The morphism φ is harmonic if for all
vertices y ∈ V (Y ), the quantity |φ−1(e′) ∩ y(1)| is independent of the choice of edge e′

∈ E(φ(y)(1)). See Fig. 1.

Definition 4. Let φ : Y → X be a harmonic morphism between graphs, with X connected. If |V (X)| > 1 (i.e. if X is not
the point graph ⋆), then the degree of the harmonic morphism φ is the number of pre-images in Y of any edge of X (this
is well-defined by [4], Lemma 2.4). If X = ⋆ is the point graph, then the degree of φ is defined to be |V (Y )|, the number of
vertices of Y .

Definition 5. Suppose that G ≤ Aut(Y ) is a (necessarily finite) group of automorphisms of the graph Y , so that we have a
left action G × Y → Y of G on Y . We say that (G, Y ) is a faithful group action if the stabilizer of each connected component
of Y acts faithfully on that component. Note that this condition is automatic if Y is connected.

Given a faithful group action (G, Y ), we denote by G\Y the quotient graph with vertex-set V (G\Y ) = G\V (Y ), and edge-
set

E(G\Y ) = G\E(Y ) − {Ge | e has endpoints y1, y2 and Gy1 = Gy2}.
Thus, the vertices and edges of G\Y are the left G-orbits of the vertices and edges of Y , with any loop edges removed. There
is a natural morphism φG : Y → G\Y sending each vertex and edge to its G-orbit, and such that edges of Y with endpoints
in the same G-orbit are φG-vertical. As demonstrated in Fig. 2, the quotient morphism φG is not necessarily harmonic, which
motivates the following definition.

1 In graph theory, the term ‘‘genus’’ usually refers to the minimal genus of an orientable surface into which a graph may be embedded, while the first
Betti number of the graph is called the cyclomatic number. But following [3], wewill refer to the quantity g(X) as the genus, because in the theory of divisors
on the graph X , it plays a role analogous to the genus of a Riemann surface.
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