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1. Introduction

Many recent papers have explored analogies between Riemann surfaces and finite graphs (e.g. [2-4,6-8,14,15,17]). In-
spired by the Accola-Maclachlan [1,21] and Hurwitz [ 18] genus bounds for holomorphic group actions on compact Riemann
surfaces, we introduced harmonic group actions on finite graphs in [ 14], and established sharp linear genus bounds for the
maximal size of such actions. As noted in the introduction to [14], it is an interesting problem to characterize the groups
and graphs that achieve the upper bound 6(g — 1). Such maximal groups and graphs may be viewed as graph-theoretic ana-
logues of Hurwitz groups and surfaces—those compact Riemann surfaces S of genus g > 2 such that Aut(S) has maximal
size 84(g — 1). This paper provides a description of the maximal graphs and groups (Theorem 1 and Proposition 12), while
also establishing connections between the recent theory of harmonic group actions and the well-studied topics of trivalent
symmetric graphs and regular combinatorial maps.

The investigation of Hurwitz groups has been arich and active area of research, and much is known about their classifica-
tion including a complete analysis of the 26 sporadic simple groups: 12 of them (including the Monster!) are Hurwitz, while
the other 14 are not (see [9,10] for an overview). One starting point for work on Hurwitz groups is the following generation
result: a finite group G is a Hurwitz group if and only if it is a non-trivial quotient of the (2, 3, 7)-triangle group A with
presentation

A=xy|¥=y=@x)" =1).

That is: the Hurwitz groups are exactly the finite groups generated by an element of order 2 and an element of order 3 such
that their product has order 7. The connection between the abstract group A and Hurwitz groups comes from the fact that
Hurwitz surfaces arise as branched covers of the thrice-punctured Riemann sphere with special ramification. Such covers
are nicely classified by the fundamental group of the punctured sphere, which is a free group on two generators.

The main result of this paper is an analogous generation result for maximal graph groups—those finite groups of size
6(g — 1) that act harmonically on a finite graph of genus g > 2:

E-mail address: scott.corry@lawrence.edu.

http://dx.doi.org/10.1016/j.disc.2014.12.016
0012-365X/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.disc.2014.12.016
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.12.016&domain=pdf
mailto:scott.corry@lawrence.edu
http://dx.doi.org/10.1016/j.disc.2014.12.016

S. Corry / Discrete Mathematics 338 (2015) 784-792 785

Theorem 1. A finite group G is a maximal graph group if and only if |G| > 6 and G is a quotient of the modular group I" with
presentation

r=kxylx¥=y=1).

That is: the maximal graph groups are exactly the finite groups generated by an element of order 2 and an element of order
3. As an immediate corollary, we have:

Corollary 2. Every Hurwitz group is a maximal graph group.

As in the case of Hurwitz groups, the connection between the modular group I" and maximal graph groups comes from
the fact that maximal graphs occur as harmonic branched covers of trees (genus 0 graphs) with special ramification (Propo-
sition 11). In order to classify such covers in general, we developed a harmonic Galois theory for finite graphs in [15], and
the resulting concrete description of harmonic branched covers is the main tool used in the proof of Theorem 1, which
we present in Section 3. The proof of Theorem 1 leads immediately to Proposition 12, which provides a close connection
between maximal graphs and trivalent symmetric graphs of type 1’ studied by Djokovi¢ and Miller in [16].

The relation between Riemann surfaces and finite graphs explored in this paper is largely analogical, rather than arising
from a precise correspondence. However, there are a variety of direct connections between Riemann surfaces (and more
generally algebraic curves) and finite graphs (see e.g. [2,5-7,19]). Of particular interest for us is a portion of the well-
established theory of combinatorial maps, whereby the specification of a cyclic ordering of the edges incident to each vertex
of a finite graph determines a 2-cell embedding of the graph in a compact Riemann surface. In the final section of this paper,
we show that our theory meshes well with this construction in the following sense: if G is a maximal graph group, then (by
Proposition 12) G acts maximally on a trivalent graph Yy. Moreover, the G-action endows Yy with a cyclic ordering of the
three edges at each vertex, and G acts as a group of holomorphic automorphisms of the corresponding Riemann surface.
Moreover, if G is actually a Hurwitz group, then the resulting surface is a Hurwitz surface with automorphism group G.

2. Harmonic group actions

In this section, we briefly review some of the definitions and results from [4,14,15]. To begin, by a graph we mean a finite
multi-graph without loop edges: two vertices may be connected by multiple edges, but no vertex has an edge to itself. We
denote the (finite) vertex-set of a graph X by V(X), and the (finite) edge-set by E(X). For a vertex x € V(X), we write x(1)
for the subgraph of X induced by the edges incident to x:

V(x(1)) := {x} U{w € V(X) | w is adjacent to x}
E(x(1)) := {e € E(X) | eis incident to x}.

The genus' of a connected graph X is the rank of its first Betti homology group: g(X) = |[E(X)| — [V(X)| + 1.

Definition 3. A morphism of graphs ¢ : Y — X is a function ¢ : V(Y) UE(Y) — V(X) U E(X) mapping vertices to ver-
tices and such that for each edge e € E(Y) with endpoints y; # y,, either ¢(e) € E(X) has endpoints ¢(y1) # ¢(y,), or
de) = ¢(y1) = d(y2) € V(X). In the latter case, we say that the edge e is ¢-vertical. The morphism ¢ is degenerate at
y e V() ifo(y(1)) = {¢()}, i.e.if ¢ collapses a neighborhood of y to a vertex of X. The morphism ¢ is harmonic if for all
vertices y € V(Y), the quantity |¢~'(e’) N y(1)| is independent of the choice of edge ' € E(¢(y)(1)). See Fig. 1.

Definition 4. Let ¢ : Y — X be a harmonic morphism between graphs, with X connected. If |[V(X)| > 1 (i.e. if X is not
the point graph x), then the degree of the harmonic morphism ¢ is the number of pre-images in Y of any edge of X (this
is well-defined by [4], Lemma 2.4). If X = x is the point graph, then the degree of ¢ is defined to be |V (Y)|, the number of
vertices of Y.

Definition 5. Suppose that G < Aut(Y) is a (necessarily finite) group of automorphisms of the graph Y, so that we have a
left action G x Y — Y of Gon Y. We say that (G, Y) is a faithful group action if the stabilizer of each connected component
of Y acts faithfully on that component. Note that this condition is automatic if Y is connected.

Given a faithful group action (G, Y), we denote by G\Y the quotient graph with vertex-set V(G\Y) = G\V(Y), and edge-
set

E(G\Y) = G\E(Y) — {Ge | e has endpoints y1, y, and Gy; = Gy,}.
Thus, the vertices and edges of G\Y are the left G-orbits of the vertices and edges of Y, with any loop edges removed. There
is a natural morphism ¢¢ : Y — G\Y sending each vertex and edge to its G-orbit, and such that edges of Y with endpoints

in the same G-orbit are ¢g-vertical. As demonstrated in Fig. 2, the quotient morphism ¢ is not necessarily harmonic, which
motivates the following definition.

T graph theory, the term “genus” usually refers to the minimal genus of an orientable surface into which a graph may be embedded, while the first
Betti number of the graph is called the cyclomatic number. But following [ 3], we will refer to the quantity g(X) as the genus, because in the theory of divisors
on the graph X, it plays a role analogous to the genus of a Riemann surface.
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