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a b s t r a c t

Graph packing generally deals with unlabeled graphs. In Duchêne et al. (2013), the authors
introduced a new variant of the graph packing problem, called labeled packing of a graph.
In the current paper, we present several results about the labeled packing number of trees.
Exact values are given in the cases of paths and caterpillars. For a general tree, a lower
bound is given thanks to the introduction of the concept of fixed-point free labeled packing.

© 2014 Elsevier B.V. All rights reserved.

1. Context and definitions

1.1. Graph theoretical definitions

All graphs considered in this paper are finite, undirected, without loops or multiple edges. An end-vertex in a graph is a
vertex of degree 1. For a graph G, wewill use V (G) and E(G) to denote its vertex and edge sets respectively. Given V ′

⊂ V (G),
the subgraphG[V ′

] denotes the subgraph ofG induced byV ′, i.e., E(G[V ′
]) contains all the edges of E having both end-vertices

in V ′. When a graph G has order n and size m, we say that G is an (n,m)-graph.
An independent set of G is a set X ⊆ V (G) such that no two vertices in X are adjacent. An independent set is maximal

if no independent set properly contains it. An independent set of maximum cardinality is a maximum independent set. For
undefined terms, we refer the reader to [3].

A permutation σ is a one-to-one mapping of {1, . . . , n} into itself. We say that a permutation σ is fixed-point-free if
σ(x) ≠ x for all x.

1.2. The graph packing problem

The graph packing problem was introduced by Bollobás and Eldridge [2] and Sauer and Spencer [10] in the late 1970s.
Let G1, . . . ,Gk be k graphs of order n. We say that there is a packing of G1, . . . ,Gk (into the complete graph Kn) if there exist
permutations σi : V (Gi) −→ V (Kn), where 1 ≤ i ≤ k, such that σ ∗

i (E(Gi)) ∩ σ ∗

j (E(Gj)) = ∅ for i ≠ j, and here the map
σ ∗

i : E(Gi) −→ E(Kn) is the one induced by σi.
A packing of k copies of the same graph G will be called a k-packing of G. In other words, a 2-packing of a graph G is a

permutation σ on V (G) such that if an edge vu belongs to E(G), then σ(v)σ (u) does not belong to E(G).
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Graph packing is awell known field of graph theory that has been considerably investigated in the literature. An overview
of the domain can be found in the survey papers ofWozniak [12] and Yap [13]. In particular, the question of the existence of a
2-packing of a given graph has received a great attention. In [4], a full characterization of all the 2-packable (n, n−1)-graphs
is given. Note that stars are the only connected (n, n − 1)-graphs that are not 2-packable. A similar result about 2-packable
(n, n)-graphs can be found in [6]. Other papers about packing of different trees into Kn can be found in [7–9].

In collaboration with R.J. Nowakowski, we have recently introduced a labeled version of graph packing [5]. Roughly
speaking, it consists of a graph packing that preserves the labels of the vertices. We give below a more formal definition of
this problem.

Definition 1 ([5]). Given a positive integer p, let G be a graph of order n and f be a mapping from V (G) to the set {1, . . . , p}.
The mapping f is called a p-labeled k-packing of G into Kn if there exist permutations σi : V (G) −→ V (Kn) for 1 ≤ i ≤ k such
that:
(1) σ ∗

i (E(G)) ∩ σ ∗

j (E(G)) = ∅ for all i ≠ j.
(2) For every vertex v of G, we have f (v) = f (σ1(v)) = f (σ2(v)) = · · · = f (σk(v)).

Themaximum positive integer p for which G admits a p-labeled k-packing is called the labeled k-packing number of G and
is denoted by λk(G). Throughout this paper, a labeled 2-packing of Gwill be denoted by a pair (f , σ ).

Remark 2. The existence of a k-packing of G is a necessary condition for the existence of p-labeled k-packing of G. It suffices
to choose p = 1.

In [5], labeled packing of cycles is studied. More precisely, the labeled k-packing number of cycles is exactly determined
for k = 2. For larger k, the problem is almost solved, except for cycles Cn with 2k + 1 ≤ n ≤ 4k − 4.

2. Preliminary results

2.1. General results about labeled 2-packings of graphs

The current paper will deal with labeled 2-packings of trees. First, we give some useful results about labeled 2-packings
in a more general context. In particular, the following lemma is a direct consequence of Definition 1.

Lemma 3. Let G be a graph of order n, and let H be a spanning subgraph of G. If there exists a 2-packing of G into Kn, then

λ2(H) ≥ λ2(G).

Proof. Indeed, since H(E) ⊆ G(E), any labeled 2-packing of G is also a labeled 2-packing of H . �

The following theorem, which was proved in [5], gives an upper bound for the labeled 2-packing number of a general
graph.

Theorem 4 ([5]). Let G be a graph of order n and let I be a maximum independent set of G. If there exists a 2-packing of G into
Kn, then

λ2(G) ≤ |I| +


n − |I|

2


.

To understand this result, consider a maximum independent set I of G and a maximum labeled 2-packing (f , σ ). The
upper bound of Theorem 4 will be reached if one can set the vertices of I as fixed points of σ , together with finding a
fixed-point-free ⌊

|V (G)\I|
2 ⌋-labeled 2-packing of the subgraph induced by V (G)\ I . For example, let us consider the caterpillar

T of Fig. 1(a). From Theorem 4, we have λ2(T ) ≤ 10. To achieve this bound it is necessary to find a 3-labeled fixed-point-free
2-packing of the central path of T (Fig. 1(b)).

Remark 5. In any labeled 2-packing of a graph G induced by a permutation σ , the vertices of every cycle in σ must have the
same label. Therefore, the labeled 2-packing number of a graph is the maximum number of cycles in a 2-packing of G.

2.2. Labeled fixed-point-free 2-packings

The above considerations lead us to introduce a new packing problem called labeled fixed-point-free 2-packing of graphs:

Definition 6. Let (f , σ ) be a p-labeled 2-packing of a given graph G. We say that f is a p-labeled fixed-point-free 2-packing if
σ is a fixed-point-free permutation.

The maximum positive integer p for which G admits a labeled fixed-point-free 2-packing of G will be called the labeled
fixed-point-free 2-packing number of G and denoted by α2(G).

Remark 7. Note that Lemma 3 is also valid for the fixed-point-free 2-packing number.
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