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a b s t r a c t

A tournament of order n is usually considered as an orientation of the complete graph
Kn. In this note, we consider a more general definition of a tournament that we call a
C-tournament, where C is the adjacency matrix of a multigraph G, and a C-tournament
is an orientation of G. The score vector of a C-tournament is the vector of outdegrees of its
vertices. In 1965 Hakimi obtained necessary and sufficient conditions for the existence of a
C-tournament with a prescribed score vector R and gave an algorithm to construct such a
C-tournament which required, however, some backtracking. We give a simpler and more
transparent proof of Hakimi’s theorem, and then provide a direct construction of such a
C-tournament which works even for weighted graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let Kn be the complete graph with vertices {1, 2, . . . , n}. A tournament of order n is an orientation of Kn. Its adjacency
matrix, a tournament matrix, is an n × n (0, 1)-matrix T = [tij] such that T + T t

= Jn − In where Jn is the n × n matrix of
all 1s. We shall not distinguish between a tournament and a tournament matrix and usually refer to both as tournaments
and label both as T . The adjacency matrix presupposes a listing of the vertices in a specified order; changing the order of
the vertices replaces T with PTP t for some permutation matrix P . The score vector of T is R = (r1, r2, . . . , rn) where ri is
the number of 1s in row i, that is, the ith row sum. The score vector of T is the vector of outdegrees of the vertices of T ; the
outdegrees determine the indegrees, since the sum of the outdegree and indegree of a vertex is n−1. One of the best known
theorems for tournaments is Landau’s theorem [15] of 1953 which asserts that a vector R = (r1, r2, . . . , rn) of nonnegative
integers is the score vector of a tournament of order n if and only if

i∈J

ri ≥


|J|
2


(J ⊆ {1, 2, . . . , n}), with equality if J = {1, 2, . . . , n}. (1)

If we assume that r1 ≤ r2 ≤ · · · ≤ rn, which we can get by reordering, then (1) is equivalent to

k
i=1

ri ≥


k
2


(k = 1, 2, . . . , n), with equality if k = n. (2)
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A generalization of Landau’s theorem to 2-tournaments is given by Avery [1] (see also [3, pp. 267–274]). Let 2G denote
the multigraph obtained from a graph G by doubling each edge, that is, each edge between a pair of vertices becomes two
edges. Define a 2-tournament to be an orientation of 2Kn. Then Avery proved that a vector R = (r1, r2, . . . , rn) of nonnegative
integers with r1 ≤ r2 ≤ · · · ≤ rn is the score vector of a 2-tournament if and only if

k
i=1

ri ≥ 2

k
2


(k = 1, 2, . . . , n) with equality if k = n. (3)

In fact, others [17] have considered the generalizations of Landau’s theorem to p-tournaments, that is, to orientations of pKn
for an integer p ≥ 2, with the various proofs for Landau’s theorem (p = 1) carrying over without much change (see [18]
for a survey of proofs; also see [8]). In the case of p = 2, Avery proves more about the existence of a 2-tournament with
score vector R and indeed gives an algorithm to construct an orientation of 2Kn with the smallest number of 2s possible in its
matrix (also see its exposition in [3, pp. 267–274]). Iványi [11,12,14], and Iványi and Schoenfield [13], study score sequences
which arise from orientations of graphs whose degrees are in a prescribed interval [p, q] where p and q are integers with
p ≤ q. Thus, when p = q these are score sequences of p-tournaments. In [10], it is shown how the existence theorem for
p-tournaments with p ≥ 2 follows from the existence theorem for 1-tournaments.

It does not seem to be well-known, at least judging from references in papers discussing scores in tournaments, that in
1965 Hakimi [9] proved an evenmore general theorem. (Hakimi does not reference Landau’s theorem so, apparently, it was
unknown to him.) Hakimi considered an arbitrarymultigraph G of order n in whichmultiple edges but not loops are allowed
and the score vector of an orientation G⃗ of G, that is, its vector of outdegrees. (The indegree of a vertex in G⃗ is determined by
its outdegree since their sum is its degree in G.) Let the vertices of G be {1, 2, . . . , n}. Hakimi’s theorem asserts that a vector
R = (r1, r2, . . . , rn) of nonnegative integers is the score vector of an orientation of G if and only if

r(J) ≥ E(J) (J ⊆ {1, 2, . . . , n}) with equality if J = {1, 2, . . . , n}, (4)

where r(J) =


i∈J ri and E(J) is the number of edges in the subgraph G(J) of G induced by the vertices in J . If G = Kn, then

E(J) =


|J|
2


, and thus Hakimi’s theorem reduces to Landau’s theorem. One of the few papers citing [9] is the paper [7] by

Entringer and Tolman where a brief survey of orientations of graphs is presented, and a theorem concerning orientations of
graphs with indegrees and outdegrees of vertices in prescribed intervals is proved.

Let C = [cij] be an integral nonnegative symmetric matrix with 0s on the main diagonal where C is regarded as the
adjacency matrix of a multigraph G with vertex set {1, 2, . . . , n} in which vertex i is joined to vertex j by cij edges for each
i ≠ j. Note that it is possible that for some i ≠ j, cij = 0 so that there are no edges between vertices i and j. Cruse [5] defined
a C-tournament to be an orientation of G; if, as above, we do not distinguish between an oriented graph and its adjacency
matrix, a C-tournament is an n×n integral nonnegative matrix T such that T + T t

= C . In a C-tournament T = [tij], players
i and j play a prescribed number cij of games, and player iwins tij of these games and player jwins the other cij − tij games.
Thus if we take C = p(Jn − In) for some positive integer p, we get p-tournaments. The score vector of a C-tournament is
R = (r1, r2, . . . , rn)where ri is the number of games won by player i, that is, the sum of the entries of T in row i. Using linear
programming techniques, Cruse [5] characterized score vectors of C-tournaments as follows: A vector R = (r1, r2, . . . , rn)
of nonnegative integers is the score vector of a C-tournament if and only if

i∈J

ri ≥


i,j∈J,i<j

cij (J ⊆ {1, 2, . . . , n}) with equality if J = {1, 2, . . . , n}.

This is equivalent to Hakimi’s theorem. Based on the approach in [5], Cruse [6] provides a polynomial algorithm for a
C-tournament with score vector R.

In the next section we give a proof of the theorem of Hakimi (using the terminology of Cruse) along the lines of the
proofs of Landau’s theorem given by Mahmoodian [16] and Thomassen [19]. We also sketch a proof using Rado’s theorem
on independent transversals of a family of subsets of a matroid, along the lines of the proof of Landau’s theorem given in [4].
In the final section we give and illustrate a method to construct a C-tournament with a prescribed score vector when such a
C-tournament exists. In fact, this constructionworks assuming only that the entries of C and R are nonnegative real numbers.
This shows that (4) is also necessary and sufficient for the existence of a generalized C-tournament with score vector (row
sum vector) R, and extends the existence result for generalized tournaments in [2,17].

2. Existence of C-tournaments

We now formally state and prove the theorem for the existence of a C-tournament with a prescribed score vector R =

(r1, r2, . . . , rn). Recall that for J ⊆ {1, 2, . . . , n}, r(J) =


i∈J ri and, where C = [cij], we also define c(J) =


i,j∈J,i<j cij.

Theorem 1. Let C = [cij] be an n × n integral nonnegative symmetric matrix with 0s on the main diagonal. A vector R =

(r1, r2, . . . , rn) of nonnegative integers is the score vector of a C-tournament if and only if

r(J) ≥ c(J) (J ⊆ {1, 2, . . . , n}) with equality if J = {1, 2, . . . , n}. (5)
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