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a b s t r a c t

This paper examines a problem in enumerative and asymptotic combinatorics involving the
classical structure of integer compositions. What is sought is an analysis on average and in
distribution of the length of the longest run of consecutive equal parts in a composition of
size n. The problem was posed by Herbert Wilf at the Analysis of Algorithms conference in
July 2009 (see arXiv:0906.5196).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A composition of an integer n is a sequence (x1, . . . , xm) of positive integers such that

n = x1 + · · · + xm, and xi ≥ 1.

The xi are called the parts and n is the size of the composition. We wish to know the length of the longest run of equal parts
(which we denote by the random variable L) in a random composition of size n. For instance, the composition

3, 2, 1, 4, 4, 4, 4, 4, 7, 3, 5, 5, 4, 2

has L = 5. A composition with L = 1 is known as a Carlitz composition. The characteristics of Carlitz compositions and their
generating function C ⟨2⟩(z) (see Proposition 1) are studied in great detail in [8,10].

Integer compositions have received a lot of attention in recent years. In [2], Brennan and Knopfmacher study the
distribution of the number of large ascents in an integer composition. Falah and Mansour complete the study of ascents
in [3] by examining small ascents. In the context of ascents, descents, and levels, finding the size of the longest run of equal
parts amounts to finding the longest string of consecutive levels in the composition. The longest run in a random word of
length nhas been studied in depth byGrabner et al. in [6]. The problemof analyzing the longest run in an integer composition
is similar, but is complicated by the fact that we are working with an infinite ‘‘alphabet’’ (i.e., the natural numbers) and our
‘‘letters’’ are weighted by their numerical value.

The solution to the longest run problem can be broken down into four main parts. In Section 2, we find a family of
generating functions for integer compositions that keeps track of the longest run of equal parts. In Section 3, we analyze the
generating functions using singularity analysis to find an asymptotic estimate of the number of compositions of size nwith
no run of length k. In Section 4, we use that estimate to describe the probability distribution of the random variable L, and
in Section 5, we calculate the mean and variance of the distribution. The analysis here has some similarities to the analytic
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treatment of compositions in [1,8,10], and the methods and notation used in this paper are detailed in the book Analytic
Combinatorics by Flajolet and Sedgewick [5].

Throughout this paper, we will use log to denote the natural logarithm, and lg to denote the base 2 logarithm. We will
also use logm(x) and lgm(x) to denote an iterated logarithm. That is, log3(x) = log log log(x).

2. Enumerative aspects of compositions

The enumeration of integer compositions is easily solved using basic combinatorics. We can create a graphical model of
a composition by representing the integers in unary using small discs (‘‘•’’) and drawing bars between some of the balls. The
following is an example using the composition 2 + 3 + 1 + 1 + 3 = 10:

• • | • • • | • | • | • • • .

Using this ‘‘balls-and-bars’’ model, we see that the number of compositions of the integer n is Cn = 2n−1, since a composition
can be viewed as the placement of separation bars at a subset of the n − 1 spaces between the balls.

We can also find the enumeration of compositions with the symbolic method [5, p. 40]. If the integers are represented
in unary, then the combinatorial class of positive integers (I) can be thought of as a sequence of atoms (Z) so that

I = Seq ≥1(Z) H⇒ I(z) =
z

1 − z
.

Since an integer composition is simply a sequence of positive integers, we can easily derive the generating function for the
class C of compositions from the specification

C = Seq (I) H⇒ C(z) =
1

1 − I(z)
=

1
1 −

z
1−z

=
1 − z
1 − 2z

.

Throughout this note, we let [zn]f (z) be the coefficient of zn in the expansion of f (z) at 0:

[zn]

n

fnzn = fn.

We find that our result using the symbolic method is consistent with the above combinatorial argument, since

[zn]C(z) = [zn]
1

1 − 2z
− [zn]

z
1 − 2z

= 2n
− 2n−1

= 2n−1.

Now that we have a generating function for all integer compositions, we need another generating function for composi-
tions, which keeps track of the longest run of equal parts. We begin by examining Smirnov words, i.e., words over anm-ary
alphabet such that no letter occurs twice in a row. Words over the m-ary alphabet {a1, . . . , am} can be represented by the
multivariate generating function

W (x1, . . . , xm) =
1

1 − (x1 + · · · + xm)
,

where xj marks the number of times the letter aj occurs in a word. That is, the expression [xn11 , . . . , x
nm
m ]W (x1, . . . , xm) de-

notes the number of words in which the letter a1 occurs n1 times, a2 occurs n2 times, and so on.
Similarly, let S(y1, . . . , ym) be the generating function for Smirnov words, where yj marks the number of times the letter

aj occurs in a word. Now, given a Smirnov word, one can obtain any word by replacing aj with a nonempty sequence of aj
(i.e., aj × Seq


aj

). In terms of generating functions, this translates to

W (x1, . . . , xm) = S


x1
1 − x1

, . . . ,
xm

1 − xm


.

We use this to find the generating function for Smirnov words in terms of the generating function for all words:

S(y1, . . . , ym) = W


y1
1 + y1

, . . . ,
ym

1 + ym


,

so that we have

S(y1, . . . , ym) =


1 −

m
j=1

yj
1 + yj

−1

.

We would like to generalize S(y1, . . . , ym) to the generating function S⟨k⟩(y1, . . . , ym) for words over anm-ary alphabet
such that no letter occurs k times in a row. We can obtain this via the substitution

yj −→

k−1
i=1

yij =
yj − ykj
1 − yj

,
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