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a b s t r a c t

We conjecture that the balanced complete bipartite graph K⌊n/2⌋,⌈n/2⌉ contains more cycles
than any other n-vertex triangle-free graph, and we make some progress toward proving
this. We give equivalent conditions for cycle-maximal triangle-free graphs; show bounds
on the numbers of cycles in graphs depending on numbers of vertices and edges, girth, and
homomorphisms to small fixed graphs; and use the bounds to show that among regular
graphs, the conjecture holds. We also consider graphs that are close to being regular, with
theminimumandmaximumdegrees differing by atmost a positive integer k. For k = 1, we
show that any such counterexamples have n ≤ 91 and are not homomorphic to C5; and for
any fixed k there exists a finite upper bound on the number of vertices in a counterexample.
Finally, we describe an algorithm for efficiently computing the matrix permanent (a #P-
complete problem in general) in a special case used by our bounds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many algorithmic problems that are computationally difficult on graphs can be solved easily in polynomial time when
the graph is acyclic. Limiting input to trees (connected acyclic graphs) or forests (acyclic graphs), however, is often too
restrictive; many of these problems remain efficiently solvable when the graph is ‘‘nearly’’ a tree [6–8,21]. Various notions
exist formalizing how close a given graph is to being a tree, including bounded treewidth (partial k-trees), k-connectivity,
and number of cycles.

The problem of evaluating c(G) for a given graph is #P-complete, equivalent in difficulty to counting the certificates
of an NP-complete decision problem, even though the problem of testing for the existence of a single cycle is trivially
polynomial-time. Existence of a cycle is a graph property definable in monadic second-order logic. By the result known as
Courcelle’s Theorem [15], such properties can be decided in linear time for graphs of bounded treewidth, and as described
by Arnborg, Lagergren, and Seese, the counting versions are also linear-time for fixed treewidth [6]. On the other hand, if
we parameterize by length of the cycles instead of structure of the graph, Flum and Grohe [19] give evidence against fixed-
parameter tractability: they show that counting cycles of length k is #W [1]-complete, with no (f (k) · nc)-time algorithm
unless the Exponential Time Hypothesis fails.

When no restrictions are imposed on the graph, the number of cycles in an n-vertex graph is maximized by the complete
graph on n vertices, Kn. In this case the number of cycles is easily seen to be
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Fig. 1. The Petersen graph minus one vertex, which contains a C6 that cannot be bridged without creating a triangle.

The bound (1) can be refined by introducing additional parameters. Previous results include bounds on the number of
cycles in terms of n,m, δ, and ∆ (the number of vertices, number of edges, minimum degree, and maximum degree of G,
respectively) [16,20,36], as well as bounds on the number of cycles for various classes of graphs, including k-connected
graphs [25], Hamiltonian graphs [29,33], planar graphs [1,2], series–parallel graphs [27], and random graphs [34].

A graph’s cycles can be classified by length. For each value of i, the summand in (1) corresponds to the number of cycles
of length i in Kn. If short cycles are disallowed, the number of long cycles possible is also reduced. Every graph G of girth g
that contains two or more cycles has n ≥ 3g/2 − 1 vertices or, equivalently, if g > 2(n + 1)/3, then G has at most one
cycle [9]. The bound on the number of cycles increases as g decreases. As mentioned earlier, the case g = 3 is maximized
by Kn for which the number of cycles is exactly (1). Can the maximum number of cycles be expressed exactly or bounded
tightly as a function of arbitrary values for n and g? Even when g = 4 the maximum number of possible cycles is unknown.
Graphs of girth four or greater are exactly the triangle-free graphs. One goal of this research program is to show that the
number of cycles in a triangle-free n-vertex graph is maximized by the complete bipartite graph K⌊n/2⌋,⌈n/2⌉, and the results
in this paper represent significant progress toward that goal.

We first encountered the problem of bounding the number of cycles as a function of n and g when examining path-
finding algorithms on graphs. A tree traversal can be achieved by applying a right-hand rule (e.g., after reaching a vertex v
via its ith edge, depart along its (i+1)st edge). Traversing a graph using only local information at each vertex is significantly
more difficult in graphs with cycles. A successful traversal can be guaranteed, however, if the local neighbourhood of every
vertex v is tree-like within some distance k from v (e.g., the graph has girth g ≥ 2k + 1) and that a fixed upper bound is
known on the number of possible cycles along paths that join pairs of leaves outside each such local tree (Bose, Carmi, and
Durocher [9] give a more formal discussion). Deriving a useful bound on this number of cycles led to the work presented in
this paper.

In any graph, every chordless cycle of length seven or greater can be bridged by the addition of a chord without creating
any triangles. Similarly, in any graph of girth six or greater, any given cycle can be bridged without creating any triangles.
There exist graphs of girth four and five, however, that contain cycles of length six that cannot be bridged without creating
a triangle. The Petersen graph minus one vertex, as shown in Fig. 1, is such a graph of girth five; replacing one of its vertices
with two sharing the same neighbourhood results in a graph of girth four with the same property. To increase the number of
cycles in a graph, large chordless cycles can be bridged greedily until the graph is triangle-free but the addition of any edge
would create a triangle. This suggests that a cycle-maximal triangle-free graph should contain many cycles of length four
or five. Since bipartite graphs are triangle free, complete bipartite graphs and, more specifically, balanced bipartite graphs
are natural candidates for maximizing the number of cycles. We verified the following conjecture to be true by exhaustive
computer search for n ≤ 13:

Conjecture 1.1. The cycle-maximal triangle-free graphs are exactly the bipartite Turán graphs, K⌊n/2⌋,⌈n/2⌉ for all n.

1.1. Overview of results

Ourmain results, Theorems 4.2 and 5.2, show that Conjecture 1.1 holds for all regular cycle-maximal triangle-free graphs,
and all near-regular cycle-maximal triangle-free graphs with greater than 91 vertices. In Section 2 we give some properties
of cycle-maximal graphs. In Section 3 we establish bounds on the number of cycles in triangle-free graphs. In Section 4
we prove Theorem 4.2, and in Section 5 we prove Theorem 5.2. Section 6 describes an algorithm for computing the matrix
permanent, which is used in our bounds.

1.2. Definitions and notation

Graphs are simple and undirected unless otherwise specified. A block in a graph G is a maximal 2-connected subgraph of
G. Given a graph G, let V (G), E(G), δ(G), and ∆(G) denote, respectively, the vertex set of G, edge set of G, minimum degree



Download English Version:

https://daneshyari.com/en/article/4647242

Download Persian Version:

https://daneshyari.com/article/4647242

Daneshyari.com

https://daneshyari.com/en/article/4647242
https://daneshyari.com/article/4647242
https://daneshyari.com

