On cyclic regular covers of complete graphs of small order

Jiangmin Pan ${ }^{\text {a,* }}$, Zhaohong Huang ${ }^{\text {b }}$, Fenghui Xu $^{\text {b }}$, Suyun Ding ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, PR China

A R T I C L E I N F O

Article history:

Received 25 June 2013
Received in revised form 16 April 2014
Accepted 23 April 2014
Available online 20 May 2014

Keywords:

Complete graph
Regular cover
Voltage assignment
Lift

Abstract

The paper presents classifications of edge-transitive cyclic regular covers of the complete graphs \mathbf{K}_{5} and \mathbf{K}_{6}, and arc-transitive cyclic regular covers of the complete graph \mathbf{K}_{7}. Two new infinite families of transitive graphs of valency 4 and 6 are found. As an application, tetravalent edge-transitive graphs of order $5 p^{2}$ with p a prime are classified.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, by a graph Γ, we mean a connected, undirected and simple graph with valency at least three.
For a graph Γ, denote its vertex set, edge set, arc set and the full automorphism group by $V \Gamma, E \Gamma, A \Gamma$ and Aut Γ, respectively. For a vertex v, let $\Gamma(v)$ denote the vertices which are adjacent to v, and let X be an automorphism group of Γ, that is, $X \leq$ Aut Γ. If X is transitive on $V \Gamma, E \Gamma$ or $A \Gamma$, then Γ is called X-vertex-transitive, X-edge-transitive or X -arc-transitive, respectively. A 2-arc of Γ is three distinct vertices (u, v, w) with u, w both adjacent to v. Then Γ is called (X, 2)-arc-transitive if X is transitive on the set of all 2-arcs of Γ. If X acts transitively on $V \Gamma$ and $E \Gamma$ but not on $A \Gamma$, then Γ is called X-half-transitive.

A transitive permutation group is called quasiprimitive if each of its nontrivial normal subgroups is transitive, while it is called bi-quasiprimitive if each of its minimal normal subgroups has at most two orbits and there exists one with exactly two orbits. It is well known that each edge-transitive graph is a multi-cover of a 'basic graph': vertex quasiprimitive or vertex biquasiprimitive edge-transitive graph. In particular, a remarkable theorem of Praeger [23] shows that each 2-arc-transitive graph is a regular cover of a basic 2 -arc-transitive graph (this result has been slightly generalized to the locally-primitive graph case in [14]). Upon these reasons, characterizing regular covers of transitive graphs has received much attention in the literature. For example, $[3,15,18,17]$ established some basic theory of cover theory, which has been successfully applied to classify cyclic or elementary abelian regular covers of a number of symmetric graphs of small valency, including the Peterson graph [19], the Heawood graph [17], the Möbius-Kantor graph [16], the complete bipartite graph $\mathbf{K}_{3,3}$ [6], the Pappus graph [21], the octahedron graph [13] and the 3-dimensional cube graph [8]. Moreover, 2-arc-transitive cyclic, \mathbb{Z}_{p}^{2} and \mathbb{Z}_{p}^{3} regular covers with p a prime of complete graphs are determined in [5,4]; arc-transitive cyclic and elementary abelian covers of the complete graph \mathbf{K}_{4} are presented in [6]; and arc-transitive elementary abelian covers of the complete graph \mathbf{K}_{5} are obtained in [12]. In the present paper, we classify edge-transitive cyclic regular covers of the complete graphs \mathbf{K}_{5} and \mathbf{K}_{6}, and arc-transitive cyclic regular covers of the complete graph \mathbf{K}_{7}.

[^0]Throughout the paper, for a positive integer n, we denote by \mathbb{Z}_{n} the cyclic group of order n with additive notation for its operation. For an element a of a group, denote by $o(a)$ the order of a. For two groups N and H, denote by $N \cdot H$ an extension of N by H, and if such an extension is split, then we write $N: H$ instead of $N \cdot H$.

The following theorem classifies edge-transitive cyclic regular covers of \mathbf{K}_{5} and \mathbf{K}_{6}. For convenience, see definitions of regular cover, multi-cover and fibre-preserving group in Section 2.

Theorem 1.1. Let Γ be a \mathbb{Z}_{n}-regular cover of the complete graph $\Sigma:=\mathbf{K}_{5}$ or \mathbf{K}_{6}. Suppose that the fibre-preserving group X acts edge-transitively on Γ. Then either
(1) $\Sigma=\mathbf{K}_{5}$, and one of the following holds:
(i) $\Gamma=\mathrm{CC}(n, 5 ; k, l)$, as in Example 2.4, is X-half-transitive, where $\langle k, l\rangle=\mathbb{Z}_{n}$, and $l \neq k s$ with $s^{2}=-1$;
(ii) $\Gamma=\operatorname{CC}(n, 5 ; 1, s)$ is X-arc-transitive but not $(X, 2)$-arc-transitive, where $s^{2}=-1$ and $n \neq 2$;
(iii) $\Gamma=\mathbf{K}_{5,5}-5 \mathbf{K}_{2}$ is 2-arc-transitive; or
(2) $\Sigma=\mathbf{K}_{6}$, and $\Gamma=\mathbf{K}_{6,6}-6 \mathbf{K}_{2}$ is 2-arc-transitive.

A graph Γ is called a Cayley graph of a group G if there is a subset $S \subseteq G \backslash\{1\}$, with $S=S^{-1}:=\left\{g^{-1} \mid g \in S\right\}$, such that $V \Gamma=G$, and two vertices g and h are adjacent if and only if $h g^{-1} \in S$. We denote this Cayley graph by $\operatorname{Cay}(G, S)$. It is well known that a graph Γ is isomorphic to a Cayley graph of a group G if and only if Aut Γ contains a subgroup which is isomorphic to G and acts regularly on $V \Gamma$, see [1, Proposition 16.3]. For convenience, we often write this regular group as G. If G is normal in X with $X \leq$ Aut Γ, then Γ is called an X-normal Cayley graph.

As an application of Theorem 1.1, the next theorem classifies tetravalent edge-transitive graphs of order $5 p^{2}$ with p a prime. Since such graphs for the case $p \leq 5$ are given in [26], we here only list such graphs with $p \geq 7$. We notice that cubic arc-transitive graphs of order $4 p, 6 p, 4 p^{2}$ or $6 p^{2}$ are classified in [6]; cubic arc-transitive graphs of order $8 p$ or $8 p^{2}$ are determined in [7]; tetravalent half-arc-transitive graphs of order $4 p$ and $2 p^{2}$ are characterized in [9,25], respectively.

Theorem 1.2. Let Γ be a tetravalent X-edge-transitive graph of order $5 p^{2}$, where $X \leq$ Aut Γ and $p \geq 7$ is a prime. Then Γ is an X-normal Cayley graph, and one of the following is true.
(1) $\Gamma=\operatorname{CC}\left(p^{2}, 5 ; k, l\right)$ with $\langle k, l\rangle \cong \mathbb{Z}_{p^{2}}$, as in Example 2.4, is a $\mathbb{Z}_{p^{2}}$-regular cover of \mathbf{K}_{5};
(2) Γ is a \mathbb{Z}_{p}^{2}-regular cover of \mathbf{K}_{5}, listed in row 2 of Table 1 in [12, Theorem 2.1];
(3) Γ is a multi-cover of the cycle \mathbf{C}_{5} of length $5, X_{v} \leq \mathbb{Z}_{2}^{2}$ with $v \in V \Gamma$, and one of the following holds.
(i) $\Gamma=\operatorname{Cay}\left(\langle a\rangle,\left\{a, a^{-1}, a^{i+1}, a^{-i-1}\right\}\right)$ with $o(a)=5 p^{2}$ and $5 \mid i$,
$\Gamma=\operatorname{Cay}\left(\langle a\rangle,\left\{a^{p}, a^{-p}, a^{5 j+p}, a^{-5 j-p}\right\}\right)$ with $o(a)=5 p^{2}$ and $p \nmid j$, or
$\Gamma=\operatorname{Cay}\left(\langle a\rangle,\left\{a^{p^{2}}, a^{-p^{2}}, a^{5 k+p^{2}}, a^{-5 k-p^{2}}\right\}\right)$ with $o(a)=5 p^{2}$ and $p \nmid k ;$
(ii) $\Gamma=\operatorname{Cay}\left(G,\left\{a, a^{-1}, a b, a^{-1} b^{-1}\right\}\right)$, where $G \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{5}, a, b \in G$ such that $o(a)=5 p, o(b)=p$ and $b \notin\langle a\rangle$;
(iii) $\Gamma=\operatorname{Cay}\left(G,\left\{a, a^{-1}, a b,(a b)^{-1}\right\}\right)$, where G is nonabelian, a is not a p-element, b is a p-element such that $\langle a, b\rangle=G$, and there is an involution $\sigma \in \operatorname{Aut}(G)$ such that $a^{\sigma}=a b$.
Graphs in Theorem 1.2 are explicitly determined with the only exception of part (3)(iii). We remark that, by analysing each of the non-isomorphic nonabelian groups of order $5 p^{2}$ (there are a few such non-isomorphic groups), graphs in part (3)(iii) may be more specifically characterized by a very long list similar to part (3)(i). For convenience, we omit this complicated and direct analysis.

The arc-transitive cyclic regular covers of \mathbf{K}_{7} are classified in the following theorem.
Theorem 1.3. Let Γ be a \mathbb{Z}_{n}-regular cover of the complete graph \mathbf{K}_{7}. Suppose that the fibre-preserving group X acts arctransitively on Γ. Then one of the following is true.
(1) $\Gamma=\operatorname{CC}(n, 7 ; k, l, s)$ with $n \geq 3$, as in Example 2.5, is X-arc-transitive;
(2) $\Gamma=\mathbf{K}_{7,7}-7 \mathbf{K}_{2}$ is 2-arc-transitive.

This paper is organized as follows. After this introduction, we give some preliminary results and new examples in Section 2. Then, Theorems 1.1-1.3 are proved in Section 3.

2. Preliminaries and examples

In this section, we present certain preliminary results and construct two infinite families of examples appearing in Theorems 1.1-1.3.

For two graphs Γ and Σ, Γ is called a cover (or covering) of Σ with a projection ρ if ρ is a surjection from $V \Gamma$ to $V \Sigma$ such that the restriction $\left.\rho\right|_{\Gamma(\tilde{v})}: \Gamma(\tilde{v}) \rightarrow \Gamma(v)$ is a bijection for each $v \in V \Sigma$ and each preimage \tilde{v} of v under ρ. Further, Γ is called a regular cover (or K-regular cover) if there is a semiregular subgroup $K \leq$ Aut Γ such that Σ is isomorphic to the quotient graph Γ_{K}, say by ϕ, and the quotient map $\Gamma \rightarrow \Gamma_{K}$ is the composition $\rho \phi$. If K is cyclic, then Γ is called a cyclic regular cover of Σ. We call that Γ is a multi-cover of a quotient graph Γ_{N} with $N \leq$ Aut Γ if it has the property that u^{N} and $v^{N} \in V \Gamma_{N}$ are adjacent in Γ_{N} if and only if the induced subgraph $\left[u^{N}, v^{N}\right]$ of Γ is isomorphic to $k \mathbf{K}_{2}$, where k is independent to the choices of u, v, refer to [20, p. 169]. For each vertex $v \in V \Sigma$, the set of preimages of v under ρ, denoted by $\rho^{-1}(v)$, is called a fibre. An automorphism of Γ is called fibre-preserving if it maps each fibre to a fibre. The group, consisting of all

https://daneshyari.com/en/article/4647254

Download Persian Version:
https://daneshyari.com/article/4647254

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: jmpan@ynu.edu.cn (J. Pan).
 http://dx.doi.org/10.1016/j.disc.2014.04.023
 0012-365X/© 2014 Elsevier B.V. All rights reserved.

