Decomposition of complete bipartite graphs into paths and cycles

S. Jeevadoss, A. Muthusamy*
Department of Mathematics, Periyar University, Salem, Tamil Nadu, India

A R T I CLE INFO

Article history:

Received 18 February 2013
Received in revised form 9 May 2014
Accepted 12 May 2014
Available online 29 May 2014

Keywords:

Graph decomposition
Complete bipartite graph
Path
Cycle

Abstract

We give conditions for decomposability of the complete bipartite graph $K_{m, n}$ into paths and cycles having k edges. In particular, we find necessary and sufficient conditions for such decomposition in $K_{m, n}$, when $m \geq \frac{k}{2}, n \geq\left\lceil\frac{k+1}{2}\right\rceil$ for $k \equiv 0(\bmod 4)$ and when $m, n \geq 2 k$ for $k \equiv 2(\bmod 4)$. As a consequence, we show that for nonnegative integers p and q, an even integer k, and odd n with $n>4 k$, there exists a decomposition of the complete graph K_{n} into p paths and q cycles both having k edges if and only if $k(p+q)=\binom{n}{2}$ and $p \neq 1$. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [6]. Let P_{k}, C_{k}, K_{k} respectively denote a path, cycle, and complete graph on k vertices, and let $K_{m, n}$ denote the complete bipartite graph with m and n vertices in the parts. A graph whose vertex set is partitioned into sets V_{1}, \ldots, V_{m} such that the edge set is $\bigcup_{i \neq j \in[m]} V_{i} \times V_{j}$ is a complete m-partite graph, denoted by $K_{n_{1}, \ldots, n_{m}}$ when $\left|V_{i}\right|=n_{i}$ for all i. For any integer $\lambda>0, \lambda G$ denotes the graph consisting of λ edge-disjoint copies of G. The λ-multiplication of G, denoted $G(\lambda)$, is the multigraph obtained from a graph G by replacing each edge with λ edges. For two graphs G and H, their lexicographic product or wreath product $G \otimes H$ has vertex set $V(G) \times V(H)$ with two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ adjacent whenever $g_{1} g_{2} \in E(G)$ or $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$. The complement of the graph G is denoted by \bar{G}.

By a decomposition of a graph G, we mean a list of edge-disjoint subgraphs of G whose union is G (ignoring isolated vertices). When there is such a decomposition using copies of (not necessarily distinct) graphs H_{1}, \ldots, H_{k}, we say that H_{1}, \ldots, H_{k} decompose G. When each subgraph in a decomposition is isomorphic to H, we say that G has an H-decomposition. If G has a decomposition into p copies of H_{1} and q copies of H_{2}, then we say that G has a $\left\{p H_{1}, q H_{2}\right\}$-decomposition. If such a decomposition exists for all values of p and q satisfying trivial necessary conditions, then we say that G has a $\left\{H_{1}, H_{2}\right\}_{\{p, q\}^{-}}$ decomposition or G is fully $\left\{H_{1}, H_{2}\right\}$-decomposable.

Study of $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition for K_{n} and $K_{m, n}$ is not new. Abueida, Daven, and Roblee [1,3] completely determined the values of n for which $K_{n}(\lambda)$ admits a $\left\{p H_{1}, q H_{2}\right\}$-decomposition such that $H_{1} \cup H_{2} \cong K_{t}$, when $\lambda \geq 1$ and $\left|V\left(H_{1}\right)\right|=$ $\left|V\left(H_{2}\right)\right|=t$, where $t \in\{4,5\}$. Let S_{k} denotes a star on k vertices, i.e. $S_{k}=K_{1, k-1}$. Abueida and Daven [2] proved that there exists a $\left\{p K_{k}, q S_{k+1}\right\}$-decomposition of K_{n} for $k \geq 3$ and $n \equiv 0,1(\bmod k)$. Abueida and O'Neil [4] proved that for $k \in\{3,4,5\}$, there exists a $\left\{p C_{k}, q S_{k}\right\}$-decomposition of λK_{n} whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in$ $\{(3,4,1),(4,5,1),(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)\}$. Shyu [13] obtained a necessary and sufficient condition

[^0]on (p, q) for the existence of $\left\{P_{5}, C_{4}\right\}_{\{p, q\}}$-decomposition of K_{n}. Shyu [14] proved that K_{n} has a $\left\{P_{4}, S_{4}\right\}_{\{p, q\}}$-decomposition if and only if $n \geq 6$ and $3(p+q)=\binom{n}{2}$. He also proved that K_{n} has a $\left\{P_{k}, S_{k}\right\}_{\{p, q\}}$-decomposition with a restriction $p \geq k / 2$ when k even (respectively, $p \geq k$ when k odd). Shyu [15] proved that K_{n} has a $\left\{C_{4}, S_{5}\right\}_{\{p, q\}}$-decomposition if and only if $4(p+q)=\binom{n}{2}, q \neq 1$ if n is odd and $q \geq \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\}$ if n is even.

Chou et al. [8] proved that for a given triple (p, q, r) of nonnegative integers, G decomposes into p copies of C_{4}, q copies of C_{6}, and r copies of C_{8} such that $4 p+6 q+8 r=|E(G)|$ in the following two cases: (a) $G=K_{m, n}$ with m and n both even at least 4, except $K_{4,4}$, (b) G is obtained from $K_{n, n}$ with n odd by deleting a perfect matching. Chou and Fu [7] proved that the existence of $\left\{C_{4}, C_{2 t}\right\}_{\{p, q\}}$-decomposition of $K_{2 u, 2 v}$, where $t / 2 \leq u, v<t$ when t even (respectively, $(t+1) / 2 \leq u, v \leq(3 t-1) / 2$, when t odd) implies such decomposition in $K_{2 m, 2 n}$, where $m, n \geq t$ (respectively, $m, n \geq(3 t+1) / 2$). Jeevadoss and Muthusamy [9] reduced the bounds in the sufficient conditions obtained by Chou and $\mathrm{Fu}[7]$ for the existence of $\left\{C_{4}, C_{2 t}\right\}_{\{p, q\}}$-decomposition of $K_{2 m, 2 n}$, when $t>2$. Lee et al. $[11,10]$ obtained a necessary and sufficient condition on (p, q) for the existence of $\left\{P_{k}, S_{k}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{n, n}$ and $K_{m, n}$. Shyu [16] proved that $K_{m, n}$ has a $\left\{P_{k}, S_{k}\right\}_{\{p, q\}}$-decomposition for some m and n. He also obtained a necessary and sufficient condition on (p, q) for the existence of $\left\{P_{4}, S_{4}\right\}_{\{p, q\}}$-decomposition of $K_{m, n}$.

In this paper, we study only the existence of $\left\{P_{k+1}, C_{k}\right\}_{\{p, q\}}$-decomposition of $K_{m, n}$ and K_{n}, so we abbreviate the notation as $(k ; p, q)$-decomposition. The obvious necessary condition for such existence is $k(p+q)=|E(G)|$. We only consider cases where all vertices are of even degree, in which the case $p \neq 1$ is also obviously necessary, since the endpoints of a single path in the decomposition would have to have odd degree. Call the situation with $k(p+q)=|E(G)|$, all vertex degrees are even, and $p \neq 1$ the good case. We prove that in the good case $K_{m, n}$ has a $(k ; p, q)$-decomposition in the following two situations: (i) $m \geq k / 2$ and $n \geq\left\lceil\frac{k+1}{2}\right\rceil$ when $k \equiv 0(\bmod 4)$ and (ii) $m, n \geq 2 k$ when $k \equiv 2(\bmod 4)$. Also, when $k \equiv 2(\bmod 4)$, we show that if $K_{m, n}$ has a $(k ; p, q)$-decomposition in the good case with $k / 2 \leq m, n<k$, then such decompositions also exist in the good case when $k / 2 \leq m<2 k$ and $n \geq k$. Finally, we apply these results to show that in the good case K_{n} has a ($k ; p, q$)-decomposition if k is even and $n>4 k$.

Let $K_{n, n}$ be the complete bipartite graph with bipartition (X, Y), where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. For $0 \leq i \leq n-1$, let $F_{i}(X, Y)$ denote the set $\left\{x_{j} y_{j+i}: j \in[n]\right\}$, where subscripts are treated modulo n. Clearly $F_{i}(X, Y)$ is a 1-factor of $K_{n, n}$, called the 1-factor of displacement i. Also, $\bigcup_{i=0}^{n-1} F_{i}(X, Y)=K_{n, n}$.
Remark. (i) For $n \in \mathbb{N}$, let $K_{2 n, 2 n}$ have partite sets $X_{1} \cup X_{3}$ and $X_{2} \cup X_{4}$, where $X_{r}=\left\{x_{1}^{r}, \ldots, x_{n}^{r}\right\}$. For $0 \leq i \leq n-1$, let $F_{i}\left(X_{r}, X_{s}\right)=\left\{x_{j}^{r} x_{j+i}^{s}: j \in[n]\right\}$, where arithmetic in subscripts is taken modulo n. Note that the union of the sets $F_{i}\left(X_{r}, X_{s}\right)$ over all i and $(r, s) \in\{(1,2),(2,3),(3,4),(4,1)\}$ decomposes $K_{2 n, 2 n}$.
(ii) For $k \in\{0, \ldots, n-1\}$ and $i \in\{1,2,3,4\}$, the set $F_{k}\left(X_{i}, X_{i+1}\right) \cup F_{k+1}\left(X_{i}, X_{i+1}\right)$ forms a 2-regular subgraph of $K_{2 n, 2 n}$ consisting a cycle of length $2 n$.
(iii) For any positive integer n, the set $F_{0}\left(X_{1}, X_{2}\right) \cup F_{0}\left(X_{2}, X_{3}\right) \cup F_{0}\left(X_{3}, X_{4}\right) \cup F_{1}\left(X_{4}, X_{1}\right)$ forms a Hamilton cycle of $K_{2 n, 2 n}$.
(iv) $F_{k}\left(X_{i}, X_{j}\right)=F_{n-k}\left(X_{j}, X_{i}\right)$, where $0 \leq k \leq n-1$.

To prove our results, we state the following:
Theorem 1.1 (Truszczynski [19]). If $k, m, n \in \mathbb{N}$ with m, n even and $m \geq n$, then $K_{m, n}$ has a P_{k+1}-decomposition if and only if $m \geq\left\lceil\frac{k+1}{2}\right\rceil ; n \geq\left\lceil\frac{k}{2}\right\rceil$ and $m n \equiv 0(\bmod k)$.

Theorem 1.2 (Sotteau [17]). If $k, m, n \in \mathbb{N}$ with $k \geq 2$, then $K_{m, n}$ has a $C_{2 k}$-decomposition if and only if the obvious necessary conditions hold (all degrees even and $2 k \mid m n$).

Theorem 1.3 (Shyu [13]). Let k, t, p be positive even integers such that $k \geq 4$ and $t>p$. If $k \leq 2(t-p)$ and $k \leq 2 p$, then there exists a $\left\{p P_{k+1},(t-p) C_{k}\right\}$-decomposition of $K_{k, t}$.

2. $(k ; p, q)$-decomposition of $K_{m, n}$ when $k \equiv 0(\bmod 4)$

In this section we investigate the existence of $(k ; p, q)$-decomposition of the complete bipartite graph $K_{m, n}$ when $k \equiv 0(\bmod 4)$. Let $x_{0} x_{1} \ldots x_{k-2} x_{k-1}$ and $\left(x_{0} x_{1} \ldots x_{k-1} x_{0}\right)$ respectively denote the path P_{k} and the cycle C_{k} with vertices $x_{0}, x_{1}, \ldots, x_{k-1}$ and edges $x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-2} x_{k-1}, x_{k-1} x_{0}$.

Construction. Let \mathbb{C}_{λ} and \mathbb{C}_{μ} be two cycles of length k, where $\mathbb{C}_{\lambda}=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ and $\mathbb{C}_{\mu}=\left(y_{1}, y_{2}, \ldots, y_{k}, y_{1}\right)$. If v is a common vertex of \mathbb{C}_{λ} and \mathbb{C}_{μ} such that at least one neighbour of v from each cycle (say, x_{i} and y_{j}) does not belong to the other cycle then we have two edge-disjoint paths of length k, say \mathbb{P}_{λ} and \mathbb{P}_{μ} from \mathbb{C}_{λ} and \mathbb{C}_{μ} as follows (see Fig. 1):

$$
\mathbb{P}_{\lambda}=\left(\mathbb{C}_{\lambda}-v x_{i}\right) \cup v y_{j}, \quad \mathbb{P}_{\mu}=\left(\mathbb{C}_{\mu}-v y_{j}\right) \cup v x_{i}
$$

Remark. Let $k, m_{1}, m_{2}, n_{1}, n_{2}$ be positive even integers such that $m_{1} \leq n_{1}$ and $m_{2} \leq n_{2}$. If $K_{m_{1}, n_{1}}$ and $K_{m_{2}, n_{2}}$ have a $(k ; p, q)$ decomposition then $K_{m_{1}, n_{1}} \cup K_{m_{2}, n_{2}}$ has a such decomposition.

Lemma 2.1. If k, m, n be positive even integers such that $k \equiv 0(\bmod 4), k / 2 \leq m \leq n<k$ and $n \neq k / 2$, then the graph $K_{m, n}$ has a ($k ; p, q$)-decomposition.

https://daneshyari.com/en/article/4647261

Download Persian Version:

https://daneshyari.com/article/4647261

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: raazdoss@gmail.com (S. Jeevadoss), appumuthusamy@gmail.com, ambdu@yahoo.com (A. Muthusamy).

