

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Decomposition of complete bipartite graphs into paths and cycles

S. Jeevadoss, A. Muthusamy*

Department of Mathematics, Periyar University, Salem, Tamil Nadu, India

ARTICLE INFO

Article history: Received 18 February 2013 Received in revised form 9 May 2014 Accepted 12 May 2014 Available online 29 May 2014

Keywords: Graph decomposition Complete bipartite graph Path Cycle

ABSTRACT

We give conditions for decomposability of the complete bipartite graph $K_{m,n}$ into paths and cycles having k edges. In particular, we find necessary and sufficient conditions for such decomposition in $K_{m,n}$, when $m \geq \frac{k}{2}$, $n \geq \lceil \frac{k+1}{2} \rceil$ for $k \equiv 0 \pmod{4}$ and when $m, n \geq 2k$ for $k \equiv 2 \pmod{4}$. As a consequence, we show that for nonnegative integers p and q, an even integer k, and odd p with p > 4k, there exists a decomposition of the complete graph k_n into p paths and p cycles both having p edges if and only if p and p in p in p and p in p and p in p in p and p in p and p in p in p and p in p in p and p in p in p in p in p in p and p in p in

1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [6]. Let P_k , C_k , K_k respectively denote a path, cycle, and complete graph on k vertices, and let $K_{m,n}$ denote the complete bipartite graph with m and n vertices in the parts. A graph whose vertex set is partitioned into sets V_1, \ldots, V_m such that the edge set is $\bigcup_{i \neq j \in [m]} V_i \times V_j$ is a complete m-partite graph, denoted by K_{n_1,\ldots,n_m} when $|V_i| = n_i$ for all i. For any integer k > 0, k = 0 denotes the graph consisting of k = 0 dege-disjoint copies of k = 0. The k = 0 denoted k = 0 den

By a *decomposition* of a graph G, we mean a list of edge-disjoint subgraphs of G whose union is G (ignoring isolated vertices). When there is such a decomposition using copies of (not necessarily distinct) graphs H_1, \ldots, H_k , we say that H_1, \ldots, H_k decompose G. When each subgraph in a decomposition is isomorphic to G, we say that G has an G-decomposition into G copies of G has a decomposition into G copies of G and G copies of G as a G-decomposition exists for all values of G and G satisfying trivial necessary conditions, then we say that G has a G-decomposition or G is fully G-decomposable.

Study of $\{H_1, H_2\}_{\{p,q\}}$ -decomposition for K_n and $K_{m,n}$ is not new. Abueida, Daven, and Roblee [1,3] completely determined the values of n for which $K_n(\lambda)$ admits a $\{pH_1, qH_2\}$ -decomposition such that $H_1 \cup H_2 \cong K_t$, when $\lambda \geq 1$ and $|V(H_1)| = |V(H_2)| = t$, where $t \in \{4, 5\}$. Let S_k denotes a star on k vertices, i.e. $S_k = K_{1,k-1}$. Abueida and Daven [2] proved that there exists a $\{pK_k, qS_{k+1}\}$ -decomposition of K_n for $k \geq 3$ and $n \equiv 0$, 1 (mod k). Abueida and O'Neil [4] proved that for $k \in \{3, 4, 5\}$, there exists a $\{pC_k, qS_k\}$ -decomposition of λK_n whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in \{(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1)\}$. Shyu [13] obtained a necessary and sufficient condition

E-mail addresses: raazdoss@gmail.com (S. Jeevadoss), appumuthusamy@gmail.com, ambdu@yahoo.com (A. Muthusamy).

^{*} Corresponding author.

on (p, q) for the existence of $\{P_5, C_4\}_{\{p,q\}}$ -decomposition of K_n . Shyu [14] proved that K_n has a $\{P_4, S_4\}_{\{p,q\}}$ -decomposition if and only if $n \ge 6$ and $3(p+q) = \binom{n}{2}$. He also proved that K_n has a $\{P_k, S_k\}_{\{p,q\}}$ -decomposition with a restriction $p \ge k/2$ when k even (respectively, $p \ge k$ when k odd). Shyu [15] proved that K_n has a $\{C_4, S_5\}_{\{p,q\}}$ -decomposition if and only if $\{P_n, P_n\} = \binom{n}{n}$, $P_n \ne 1$ if P_n is odd and P_n max $\{P_n, P_n\} = \binom{n}{n}$.

 $4(p+q)=\binom{n}{2}$, $q\neq 1$ if n is odd and $q\geq \max\{3,\lceil\frac{n}{4}\rceil\}$ if n is even. Chou et al. [8] proved that for a given triple (p,q,r) of nonnegative integers, G decomposes into P copies of C_4 , Q copies of C_6 , and P copies of C_8 such that P0 in the following two cases: (a) P0 is obtained from P1 proved that the existence of P2 in the following two cases: (a) P3 is obtained from P4 in the following two cases: (a) P5 is obtained from P6 in the following two cases: (a) P8 is obtained from P8 in the following two cases: (a) P8 is obtained from P9 proved that the existence of P9 is obtained from P9 in the following two cases: (a) P9 in the following two cases: (

In this paper, we study only the existence of $\{P_{k+1}, C_k\}_{\{p,q\}}$ -decomposition of $K_{m,n}$ and K_n , so we abbreviate the notation as (k; p, q)-decomposition. The obvious necessary condition for such existence is k(p+q)=|E(G)|. We only consider cases where all vertices are of even degree, in which the case $p \neq 1$ is also obviously necessary, since the endpoints of a single path in the decomposition would have to have odd degree. Call the situation with k(p+q)=|E(G)|, all vertex degrees are even, and $p \neq 1$ the good case. We prove that in the good case $K_{m,n}$ has a (k; p, q)-decomposition in the following two situations: (i) $m \geq k/2$ and $n \geq \lceil \frac{k+1}{2} \rceil$ when $k \equiv 0 \pmod{4}$ and (ii) $m, n \geq 2k$ when $k \equiv 2 \pmod{4}$. Also, when $k \equiv 2 \pmod{4}$, we show that if $K_{m,n}$ has a (k; p, q)-decomposition in the good case with $k/2 \leq m, n < k$, then such decompositions also exist in the good case when $k/2 \leq m < 2k$ and $n \geq k$. Finally, we apply these results to show that in the good case K_n has a (k; p, q)-decomposition if k is even and n > 4k.

Let $K_{n,n}$ be the complete bipartite graph with bipartition (X, Y), where $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$. For $0 \le i \le n-1$, let $F_i(X, Y)$ denote the set $\{x_j y_{j+i} : j \in [n]\}$, where subscripts are treated modulo n. Clearly $F_i(X, Y)$ is a 1-factor of $K_{n,n}$, called the 1-factor of displacement i. Also, $\bigcup_{i=0}^{n-1} F_i(X, Y) = K_{n,n}$.

- **Remark.** (i) For $n \in \mathbb{N}$, let $K_{2n,2n}$ have partite sets $X_1 \cup X_3$ and $X_2 \cup X_4$, where $X_r = \{x_1^r, \dots, x_n^r\}$. For $0 \le i \le n-1$, let $F_i(X_r, X_s) = \{x_j^r x_{j+i}^s : j \in [n]\}$, where arithmetic in subscripts is taken modulo n. Note that the union of the sets $F_i(X_r, X_s)$ over all i and $(r, s) \in \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ decomposes $K_{2n,2n}$.
- (ii) For $k \in \{0, ..., n-1\}$ and $i \in \{1, 2, 3, 4\}$, the set $F_k(X_i, X_{i+1}) \cup F_{k+1}(X_i, X_{i+1})$ forms a 2-regular subgraph of $K_{2n,2n}$ consisting a cycle of length 2n.
- (iii) For any positive integer n, the set $F_0(X_1, X_2) \cup F_0(X_2, X_3) \cup F_0(X_3, X_4) \cup F_1(X_4, X_1)$ forms a Hamilton cycle of $K_{2n,2n}$.
- (iv) $F_k(X_i, X_i) = F_{n-k}(X_i, X_i)$, where $0 \le k \le n-1$.

To prove our results, we state the following:

Theorem 1.1 (*Truszczynski* [19]). If $k, m, n \in \mathbb{N}$ with m, n even and $m \ge n$, then $K_{m,n}$ has a P_{k+1} -decomposition if and only if $m \ge \lceil \frac{k+1}{2} \rceil$; $n \ge \lceil \frac{k}{2} \rceil$ and $mn \equiv 0 \pmod{k}$.

Theorem 1.2 (Sotteau [17]). If k, m, $n \in \mathbb{N}$ with $k \ge 2$, then $K_{m,n}$ has a C_{2k} -decomposition if and only if the obvious necessary conditions hold (all degrees even and $2k \mid mn$).

Theorem 1.3 (Shyu [13]). Let k, t, p be positive even integers such that $k \ge 4$ and t > p. If $k \le 2(t-p)$ and $k \le 2p$, then there exists a $\{pP_{k+1}, (t-p)C_k\}$ -decomposition of $K_{k,t}$.

2. (k; p, q)-decomposition of $K_{m,n}$ when $k \equiv 0 \pmod{4}$

In this section we investigate the existence of (k; p, q)-decomposition of the complete bipartite graph $K_{m,n}$ when $k \equiv 0 \pmod{4}$. Let $x_0x_1 \dots x_{k-2}x_{k-1}$ and $(x_0x_1 \dots x_{k-1}x_0)$ respectively denote the path P_k and the cycle C_k with vertices x_0, x_1, \dots, x_{k-1} and edges $x_0x_1, x_1x_2, \dots, x_{k-2}x_{k-1}, x_{k-1}x_0$.

Construction. Let \mathbb{C}_{λ} and \mathbb{C}_{μ} be two cycles of length k, where $\mathbb{C}_{\lambda} = (x_1, x_2, \dots, x_k, x_1)$ and $\mathbb{C}_{\mu} = (y_1, y_2, \dots, y_k, y_1)$. If v is a common vertex of \mathbb{C}_{λ} and \mathbb{C}_{μ} such that at least one neighbour of v from each cycle (say, x_i and y_j) does not belong to the other cycle then we have two edge-disjoint paths of length k, say \mathbb{P}_{λ} and \mathbb{P}_{μ} from \mathbb{C}_{λ} and \mathbb{C}_{μ} as follows (see Fig. 1):

$$\mathbb{P}_{\lambda} = (\mathbb{C}_{\lambda} - vx_i) \cup vy_j, \qquad \mathbb{P}_{\mu} = (\mathbb{C}_{\mu} - vy_j) \cup vx_i.$$

Remark. Let k, m_1 , m_2 , n_1 , n_2 be positive even integers such that $m_1 \le n_1$ and $m_2 \le n_2$. If K_{m_1,n_1} and K_{m_2,n_2} have a (k; p, q)-decomposition then $K_{m_1,n_1} \cup K_{m_2,n_2}$ has a such decomposition.

Lemma 2.1. If k, m, n be positive even integers such that $k \equiv 0 \pmod{4}$, $k/2 \le m \le n < k$ and $n \ne k/2$, then the graph $K_{m,n}$ has a (k; p, q)-decomposition.

Download English Version:

https://daneshyari.com/en/article/4647261

Download Persian Version:

https://daneshyari.com/article/4647261

<u>Daneshyari.com</u>