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a b s t r a c t

A guillotine partition of a d-dimensional axis-aligned box B is a recursive partition of B by
axis-aligned hyperplane cuts. The size of a guillotine partition is the number of boxes it
contains. Two guillotine partitions are box-equivalent if their boxes satisfy compatible order
relations with respect to the axes. (In many works, box-equivalent guillotine partitions are
considered identical.) In the presentworkwe define cut-equivalence of guillotine partitions,
derived in a similarway fromorder relations of cuts.We prove structural properties related
to these kinds of equivalence, and enumerate cut-equivalence classes of d-dimensional
guillotine partitions of size n.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Basic definitions

Let Bbe a d-dimensional axis-aligned box. A guillotine partition ofB is either the trivial partition (whose only part isB itself)
or a partition obtained by cutting B by a hyperplanewhich is perpendicular to an axis xi, 1 ≤ i ≤ d, into two sub-boxeswhose
inner partitions are also guillotine (in a recursive way). The size of a guillotine partition is the number of (unpartitioned)
boxes in it.Weoftendenote byB the partition aswell as the box. Fig. 1 shows two3-dimensional guillotine partitions of size 6.

Guillotine partitions have been studied intensively due to their important role in geometric algorithms, visualization
of scientific data, integrated circuit design, and many more fields. Stockmeyer [10], Du et al. [5], Gonzalez and Zheng [7]
suggested algorithms for approximating the minimum edge-length guillotine partition in two dimensions. Mitchell [8] and
Cardei et al. [4] developed polynomial-time approximation schemes (PTASs) for this problem.

Yao et al. [11] were the first to show that the number of combinatorial types (or, in our terms, B-equivalence classes)
of planar guillotine partitions of size n + 1 is the nth Schröder number. This was generalized to higher-dimensional guil-
lotine partitions by Ackerman et al. [1]; their representation by so-called ‘‘separable multidimensional permutations’’ was
suggested by Asinowski andMansour [3]. There are plenty more works on computational, optimization, and approximation
aspects of guillotine partitions.
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Fig. 1. Two (C-equivalent) guillotine partitions of a 3-dimensional box.

Understanding the combinatorial structure of guillotine partitions is, therefore, important not only from the combinato-
rial point of view, but also for analyzing the efficiency of data structures that hold the partitions, and the running times of
algorithms that generate them. In many works, guillotine partitions that have the same recursive structure with respect to
their boxes are considered identical. However, another kind of elements in guillotine partitions is their cuts. In some appli-
cations, the structure of the cuts is more relevant to the complexity or running-time analysis than the structure of the boxes.
For example, suppose that we fix a point set P of size n (being in general position in the sense that no two points of P belong
to the same axis-aligned hyperplane) in a d-dimensional box B, and consider guillotine partitions of B such that each point
of P belongs to exactly one cut. The combinatorial description of cut-point incidence in this case involves rather cuts than
boxes, and the ‘‘cut-equivalence’’ is a natural way to identify guillotine partitions. Alternatively, one can be interested in ar-
rangements of axis-aligned (d− 1)-dimensional boxes (e.g., rectangles in the 3-space), such that the natural neighborhood
relations between them are important, but the exact orientation (that is, being orthogonal to a specific axis) is not essential
and can be chosen according to some additional parameters. If such an arrangement induces a guillotine partition, then
our notion of cut-equivalence captures properly its combinatorial structure. In addition, this equivalence allows to define a
subclass of guillotine partitions with a simplified structure—without so-called ‘‘improper pairs’’ (see Section 4).

Thus, the goal of this paper is to study systematically these two types of structures. To this aim, we define two kinds
of equivalence of d-dimensional guillotine partitions, namely, B-equivalence and C-equivalence,2 in terms of order rela-
tions between boxes and cuts, respectively. We demonstrate that B-equivalence is in fact the ‘‘usual’’ way to identify guillo-
tine partitions, while C-equivalence is a coarser way to do it. We also show how C-equivalence is related to B-equivalence
(Propositions 17 and 18), and use this result to obtain an enumeration of C-equivalence classes (Theorem 2). An important
issue here is the asymptotic enumeration of cuts. How much do we save if we create all possible C-equivalence classes
(or, equivalently, all B-equivalence classes without ‘‘improper pairs’’) instead of B-equivalence classes? We show that for
C-equivalence, the asymptotic growth rate is roughly one half of that for B-equivalence.

The intersection of a box B with a hyperplane that splits it into two sub-boxes is a primary cut (for example, c0 and c3 in
Fig. 1 are primary cuts). If either of these boxes is further partitioned, we can speak about its primary cut as well. A cut in a
guillotine partition is either a primary cut of the whole box, or (in a recursive manner) a (primary) cut in the partition of one
of the sub-boxes. It is assumed that parallel cuts do not intersect, that is, they cannot share a (d− 2)-dimensional ‘‘edge’’. It
is easy to see by induction that a guillotine partition B of size n+1 (which will be denoted by |B| = n+1) has exactly n cuts.

Throughout this paper, the dimension d is assumed fixed, and all the guillotine partitions are assumed to be d-
dimensional.

If a nontrivial guillotine partition B has several primary cuts, then they are all perpendicular to the same axis. If the pri-
mary cut(s) of a nontrivial guillotine partition B is (are) perpendicular to the xi axis, we say that B is xi-aligned. The parts of
B bounded by two consecutive primary cuts, as well as the part below the lowest (with respect to xi) primary cut, and the
part above the highest primary cut, will be called slices and denoted by S1, . . . , Sk (ordered from bottom to top with respect
to xi). A trivial slice is a slice of size 1. A 2-slice is a slice of size 2. Primary cuts of any slice are not parallel to those of B; that
is, any nontrivial slice is aligned differently from B. The guillotine partition in Fig. 1 is x-aligned, and it has three slices: S1 is
a z-aligned slice of size 3, S2 is a trivial slice, and S3 is a y-aligned 2-slice. The lowest primary cut with respect to xi (where
xi is as above) is called the principal cut of B. The sub-boxes obtained by cutting B along the principal cut are denoted by B−
(the part of B below the principal cut, that is, the lowest slice) and B+ (the part of B above the principal cut). In Fig. 1, the
principal cut of B is c0, the principal cut of B− is c1, and the principal cut of B+ is c3.

1.2. Order relations in guillotine partitions

We define d order relations between boxes and between cuts in d-dimensional guillotine partitions.

Definition 1. Consider a nontrivial d-dimensional guillotine partition Bwith principal cut c.

2 B stands for boxes, C for cuts.
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