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a b s t r a c t

Let n = λm. A frequency square F(n; λ) is an n × n array in which each of m distinct
symbols appears exactly λ times in each row and column. Two such squares are said to
be orthogonal if upon superposition, each of the m2 distinct ordered pairs occurs exactly
λ2 times. Hedayat, Sloane and Stufken in their book Hedayat et al. (1999) provided a small
table of lower bounds for themaximumnumber of mutually orthogonal frequency squares
of type F(n; λ) (HSS Table), and posed the following research problem: Improve the lower
bound for the entries in HSS Table.

Laywine and Mullen in 2001 extended the table (LM Table). In this article we will
give some new construction methods of mutually orthogonal frequency squares. As an
application we improve the lower bounds for more than half of the entries in LM Table.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A frequency square F(n; λ1, λ2, . . . , λm) is an n× n array consisting of the number 1, 2, . . . ,mwith the property that for
each i = 1, 2, . . . ,m, the number i occurs exactly λi times in each row and each column. Clearly n = λ1 +λ2 +· · ·+λm and
an F(n; 1, . . . , 1) frequency square is a Latin square of order n. If all of the λi’s are equal to λ, we will simply write F(n; λ).
Two frequency squares F1(n, λ1, λ2, . . . , λm1) and F2(n;µ1, µ2, . . . , µm2) are said to be orthogonal if upon superposition,
each ordered pair (i, j) occurs exactly λiµj times for i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2. A set {F1, F2, . . . , Ft} of t ≥ 2
frequency squares is said to be orthogonal if Fi is orthogonal to Fj whenever i ≠ j.

Mutually orthogonal frequency squares (MOFS) have been studied by some researchers and found to have a number
of applications. In statistics they are primarily used in designing experiments, Hedayat, Sloane and Stufken in [13] pointed
out: Although Latin squares havemany useful properties, for some statistical applications these structures are too restrictive.
The more general concepts of frequency squares and orthogonal frequency squares offer more flexibility. Anthony, Martin,
Seberry and Wild in [5] gave an application in cryptography.

We use the notation t MOFS(n; λ) to denote t mutually orthogonal frequency squares of type F(n; λ), and the notation
f (n; λ) to denote the lower bounds for the maximum number of mutually orthogonal frequency squares of type F(n; λ),
that is, the number of MOFS that can currently be constructed of type F(n; λ). It is easy to see that F(n; 1) is a Latin square
of order n, tMOFS(n; 1) are t mutually orthogonal Latin squares of order n, tMOLS(n). f (n; 1) is the lower bounds for the
maximum number of mutually orthogonal Latin squares of order n. From Hedayat, Raghavarao and Seiden [12] we know

f (n, λ) ≤
(n − 1)2

m − 1
.

✩ This work was supported by the National Natural Science Foundation of China (Grant Nos. 11171248, 11301370).
∗ Corresponding author.

E-mail address: dubl@suda.edu.cn (B. Du).

http://dx.doi.org/10.1016/j.disc.2014.05.006
0012-365X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.05.006
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.05.006&domain=pdf
mailto:dubl@suda.edu.cn
http://dx.doi.org/10.1016/j.disc.2014.05.006


176 M. Li et al. / Discrete Mathematics 331 (2014) 175–187

Hedayat, Sloane and Stufken in their book [13] provided a small table of the lower bounds for the maximum number of
MOFS of type F(n; λ) (HSS Table), and posed the following research problem (Research Problem 8.22 in [13]).
Research problem Improve the lower bounds for the entries in HSS Table and extend the table.

In 2001, Laywine and Mullen [15] extended HSS Table (LM Table). But for (n, λ) = (44, 22) and (88, 22) in LM Table,
f (n; λ) should be 1849 and 86 respectively as constructed by Laywine and Mullen in [15]. Moreover from Finney [10], we
know that f (6; 2) = 7 and f (6; 3) = 8. In LM Table, they were written as f (6; 2) = 8 and f (6; 3) = 7. Applying them to the
constructions in [15] yields some entries of f (n; λ) not the same as those in LM Table. We show them in Table 1.1 in bold.

In this paper we will give some constructionmethods of MOFS. As an application we improve the lower bounds for more
than half of entries in LM Table. We show them in Table 1.1, where we write f (n; λ) simply as f , fLM denotes the value of
f (n, λ) in LM Table (with the corrections mentioned above) and fNew denotes the value of f (n, λ) in our article.

2. Preliminaries

In this section we introduce some of the auxiliary designs and establish some of the fundamental results which will be
used later. A transversal design of group size n, block size k and index λ, denoted by TDλ(k, n), is a triple (X,G,B) where:
X is a set of kn elements; G is a partition of X into k classes (called groups), each of size n; B is a collection of k-subsets
of X (called blocks); and every unordered pair of elements from X is either contained in exactly one group, or contained in
exactly λ blocks, but not both. When λ = 1, one writes simply TD(k, n). Greig and Colbourn in [11] gave a table of TDλ(k, n)
with 1 ≤ λ ≤ 36 and 2 ≤ n ≤ 50. It is well known that the existence of a TD(k, n) is equivalent to the existence of
k − 2 MOLS(n), that is, k − 2 MOFS(n; 1), and the existence of a TDλ(k, n) is equivalent to the existence of an (n, k; λ)-net
(see, for example, [6]). An (n, k; λ)-net is a set X of λn2 elements together with a setD of kn subsets of X (called blocks) each
of size λn. The set of all blocks is partitioned into k parallel classes, each containing n disjoint blocks. Every two nonparallel
blocks intersect in λ elements.

Lemma 2.1. If there exist a TD λ
m
(r,m) and t MOLS(λm), then there exist s + (t − s)r MOFS of order λm, which consist of

s MOLS(λm) and (t − s)r MOFS(λm; λ), for any non-negative integer s < t.

Proof. Notice that the existence of a TD λ
m
(r,m) is equivalent to the existence of an (m, r; λ

m )-net, let (X,D) be the

(m, r; λ
m )-net and Γ = {C1, C2, . . . , Cr} be all the parallel classes in X , where Ci = {Bi1, Bi2, . . . , Bim}, i = 1, 2, . . . , r .

Let {L1, . . . , Ls, Ls+1, . . . , Lt} be the set of MOLS of order λm. We may assume the λm distinct symbols in the Latin squares
are just the λm points in X , say 1, 2, . . . , λm. To any Ci ∈ Γ and any Lj ∈ {Ls+1, . . . , Lt}, we define a λm×λm square Fij from
Lj by mapping {1, 2, . . . , λm} onto {1, 2, . . . ,m} in such a way that

σi(x) = h, x ∈ Bih, 1 ≤ h ≤ m.

It is obvious that Fij is a frequency square of type F(λm; λ).
We now show two distinct frequency squares defined above are orthogonal.
First consider the orthogonality of Fi1j1 and Fi2j2 where j1 ≠ j2. Symbol α in Fi1j1 and symbol β in Fi2j2 are derived from

Bi1h1 in Ci1 and Bi2h2 in Ci2 respectively. To any α′
∈ Bi1h1 and any β ′

∈ Bi2h2 , the pair (α′, β ′) occurs exactly once when
Lj1 is superimposed on Lj2 since Lj1 and Lj2 are orthogonal. So the pair (α, β) occurs exactly λ · λ = λ2 times when Fi1j1 is
superimposed on Fi2j2 .

Next we consider the orthogonality of Fi1j1 and Fi2j2 where j1 = j2. Then i1 ≠ i2. Symbol α in Fi1j1 and symbol β in Fi2j2 are
derived from Bi1h1 in Ci1 and Bi2h2 in Ci2 respectively. Since Ci1 and Ci2 are two parallel classes of X , we have |Bi1h1 ∩Bi2h2 | =

λ
m .

So the pair (α, β) occurs exactly λ
m times in each of the λm rows if Fi1j1 is superimposed on Fi2j2 . Since

λ
m · λm = λ2, the

orthogonality condition is satisfied.
Now there are r possible parallel classes Ci and t − s possible Latin squares Lj. So we obtain (t − s)r MOFS(λm; λ).
Finally we show L is orthogonal to Fij defined above, where L ∈ {L1, . . . , Ls}.
Symbol β in Fij is derived from Bih in Ci. The pair consisting of symbol α in L and any β ′ of Bih occurs exactly once when L

is superimposed on Lj. So the pair (α, β) occurs exactly λ times if L is superimposed on Fij.
Therefore we obtain the result. �

When s = 0 and 1, we have the following corollary.

Corollary 2.2. 1. If there exist a TD λ
m
(r,m) and t MOLS(λm), then there exist 1+ (t − 1)r MOFS of order λm, which consist of

a Latin square of order λm and (t − 1)r MOFS(λm; λ).
2. If there exist a TD λ

m
(r,m) and t MOLS(λm), then there exist tr MOFS(λm; λ).

Lemma 2.3. There exist 6 MOFS of order 4, which consist of a Latin square of order 4 and 6MOFS(4; 2).

Proof. It comes from Corollary 2.2 with k = m = 2 and r = 3. The conditions TD(3, 2) and 3 MOLS(4) we need come
from [6]. �
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