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color from its list so that any adjacent or incident elements receive different colors. In this
paper, we prove that every plane graph G with maximum degree A(G) > 9 is edge-face
(A(G) + 1)-choosable.
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1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges unless otherwise stated. A plane graph
is a particular drawing in the Euclidean plane of a planar graph. For a plane graph G, we denote its vertex set, edge set, face
set, maximum degree, and minimum degree by V(G), E(G), F(G), A(G) and §(G), respectively.

A plane graph G is edge-face k-colorable if E(G) UF (G) can be colored with k colors such that any two adjacent or incident
elements receive different colors. The edge-face chromatic number x.;(G) of G is defined to be the least integer k such that G
is edge-face k-colorable.

A mapping L is said to be an assignment for the plane graph G if it assigns a list L(x) of possible colors to each element x
in E(G) U F(G). If G has an edge-face coloring ¢ such that ¢ (x) € L(x) for all elements x, then we say that G is edge-face L-
colorable or ¢ is an edge-face L-coloring of G. G is edge-face k-choosable if it is edge-face L-colorable for every list assignment
L satisfying |L(x)| = k for all elements x € E(G) UF(G). The list edge-face chromatic number XeLf (G) of G is the smallest integer

k such that G is edge-face k-choosable. By definition, it is straightforward to derive that XeLf (G) > xr(G) = A(G).

The edge-face colorings of plane graphs were first studied by Jucovi¢ [5] and Fiamcik [3], who investigated the case of
3-and 4-regular plane graphs. In 1975, Mel'nikov [9] conjectured that every plane graph G is edge-face (A(G)+3)-colorable.
Wang [15], and independently Hu et al. [4] confirmed the conjecture for the case A(G) < 3. Wang and Zhang [ 18] further
settled the case A(G) = 4. Two similar, yet independent, proofs of this conjecture were given by Waller [ 14] and Sanders and
Zhao [10]. Both proofs made use of the Four-Color Theorem. Without applying the Four-Color Theorem, Wang and Lih [16],
and independently, Sanders and Zhao [12], gave a new proof of this conjecture.

Borodin [ 1] proved that every plane graph G with A(G) > 10 is edge-face (A(G) + 1)-colorable. Recently, the condition
that A(G) > 10isreduced to A(G) = 9 by Sereni and Stehlik [ 13], and independently, by Macon [8], and further to A(G) = 8
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by Kang et al. [6]. These results imply that every plane graph G with A(G) > 7 is edge-face (A(G) + 2)-colorable. Sanders
and Zhao [11] proved that every plane graph G with A(G) = 3 is edge-face 5-colorable. More recently, Chen, Raspaud and
Wang [2] proved that every plane graph G with A(G) = 6 is edge-face 8-colorable.

In [17], Wang and Lih investigated the list edge-face coloring of plane graphs. They proved that every plane graph G
is edge-face (A(G) + 3)-choosable. This is a reinforcement of the results in [10,12,14,16]. In this paper, we consider the
edge-face choosability of plane graph with large maximum degree. More precisely, we show the following:

Theorem 1. If G is a plane graph with A(G) > 9, then XeLf(G) < AG) + 1.

Theorem 1 extends and improves the result of [1,13]. The organization of this paper is as follows. In Section 2, we collect
some notation and basic definitions used in the subsequent sections. In Section 3, we establish a structural lemma, which
plays a key role in the proof of the main result. The proof of Theorem 1 is postponed to Section 4. Some open problems are
proposed in Section 5.

2. Notation

Let G be a plane graph with §(G) > 2. For f € F(G), we use b(f) to denote the boundary walk of f and write
f = [uquy - - -uy] ifuq, uy, . . ., u, are the vertices of b(f) in clockwise order. Repeated occurrences of a vertex are allowed.
The degree of a face is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. For
x € V(G) UF(G), let ds(x) denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively) is called
a k-vertex (k~-vertex, k™ -vertex, respectively). Similarly, we can define k-face, k~-face and k™-face. When v is a k-vertex,
we say that there are k faces incident to v. However, these faces are not required to be distinct, i.e., v may have repeated

occurrences on the boundary walk of some of its incident faces. Sometimes, v is said to be a (aj, a,, . .., ay)-vertex if it is
incident to k faces f1, f>, . . ., fi in clockwise order with dg(f;) = a; fori = 1, 2, ..., k. However, some of these faces may be
identical.

Forafacef € F(G),let m(f) denote the number of different faces incident to f and m4- (f) denote the number of different
4~ -faces incident to f, respectively. We say that f is light if f is adjacent to a 4~ -face f’, d¢(f) + m(f) — my-(f) < 9, and
b(f) N b(f) contains a 2-vertex.

For an edge e = xy € E(G), let t(e) and g(e) denote the number of 3-faces and 4-faces incident to e, respectively. Let
l(e) = t(e) +q(e).Ifl(e) > 1and dg(x) + dg(y) — I(e) <9, then e is called a light edge. We say that e is triangular if t(e) > 1,
and fully-triangular if t(e) = 2. Note that a fully-triangular edge is also a triangular edge, but not vice versa. A vertex v is
triangular (or fully-triangular) if each edge incident to v is triangular (or fully-triangular).

A cycle C of the plane graph G is called separating if both its interior and exterior contain at least one vertex of G. Let
V9(C) denote the set of vertices in G that lie interior to C. A 2-vertex is called bad if it lies in a separating 3-cycle. Otherwise,
it is called good.

3. A structural lemma

Lemma 2. Let G be a connected plane graph with §(G) > 2. Then G contains one of the following configurations:

C1) A 2-vertex incident to a 4~ -face and a 5~ -face.

(

(C2) A 4-cycle viv,v3v4v1 satisfying that for i € {1, 3}, v; is either a triangular 2-vertex or a (3, 4=, 4™)-vertex.

(C3) A good 2-vertex adjacent to a 5~ -vertex.

(C4) A 5-face incident to an edge uv with dg(u) + dg(v) < 9.

(C5) A light edge.

(C6) A light face.

(C7) Aface f = [uquy - - - upg] withs > 2 such thatfori=1,3,...,2s — 1, dg(u;) = 2 and u; is incident to a 4~ -face.

Proof. Assume to the contrary that the lemma is false and G is a counterexample. Then G is a connected plane graph with

8(G) > 2 and containing none of the configurations (C1)-(C7). To obtain a contradiction by discharging analysis, we need

to define a new graph H from G in the following way: If there are no bad 2-vertices in G, we put H = G. Otherwise, choose

a separating 3-cycle T with the least interior vertices and passing through a bad 2-vertex, and put H = G[V°(T) U V(T)].

In the following, we call vertices in VO(T) internal vertices of H and vertices in V(T) T-vertices of H (if T exists). For each

v € VO(T), it is evident that dy (v) = d¢(v). Since G contains no (C3), there are no two adjacent internal 2-vertices in H.
Because G contains no (C1) and (C5), the following Claim 1 holds automatically.

Claim 1. Let x and y be two adjacent internal vertices with I(xy) > 1.

(1) If dy(x) = 2, thendy(y) > 9.

(2) Assume that dy(x) = 3.If I(xy) = 2, thendy(y) > 9; If l(xy) = 1, thendy(y) > 8.
(3) Assume that dy(x) = 4. If I(xy) = 2, thendy(y) > 8; If I(xy) = 1, thendy(y) > 7.
(4) Assume that dy(x) = 5.1If I(xy) = 2, thendy(y) > 7;If l(xy) = 1, thendy(y) > 6.
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