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a b s t r a c t

A plane graph G is said to be edge-face k-choosable if, for every list L of colors satisfying
|L(x)| = k for x ∈ E(G)∪ F(G), there exists a coloring which assigns to each edge and face a
color from its list so that any adjacent or incident elements receive different colors. In this
paper, we prove that every plane graph G with maximum degree ∆(G) ≥ 9 is edge-face
(∆(G) + 1)-choosable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, loopless, andwithout multiple edges unless otherwise stated. A plane graph
is a particular drawing in the Euclidean plane of a planar graph. For a plane graph G, we denote its vertex set, edge set, face
set, maximum degree, and minimum degree by V (G), E(G), F(G), ∆(G) and δ(G), respectively.

A plane graph G is edge-face k-colorable if E(G)∪ F(G) can be colored with k colors such that any two adjacent or incident
elements receive different colors. The edge-face chromatic number χef (G) of G is defined to be the least integer k such that G
is edge-face k-colorable.

A mapping L is said to be an assignment for the plane graph G if it assigns a list L(x) of possible colors to each element x
in E(G) ∪ F(G). If G has an edge-face coloring φ such that φ(x) ∈ L(x) for all elements x, then we say that G is edge-face L-
colorable orφ is an edge-face L-coloring of G. G is edge-face k-choosable if it is edge-face L-colorable for every list assignment
L satisfying |L(x)| = k for all elements x ∈ E(G)∪F(G). The list edge-face chromatic number χ L

ef (G) of G is the smallest integer
k such that G is edge-face k-choosable. By definition, it is straightforward to derive that χ L

ef (G) ≥ χef (G) ≥ ∆(G).
The edge-face colorings of plane graphs were first studied by Jucovič [5] and Fiamčík [3], who investigated the case of

3- and 4-regular plane graphs. In 1975,Mel’nikov [9] conjectured that every plane graphG is edge-face (∆(G)+3)-colorable.
Wang [15], and independently Hu et al. [4] confirmed the conjecture for the case ∆(G) ≤ 3. Wang and Zhang [18] further
settled the case∆(G) = 4. Two similar, yet independent, proofs of this conjecturewere given byWaller [14] and Sanders and
Zhao [10]. Both proofs made use of the Four-Color Theorem. Without applying the Four-Color Theorem, Wang and Lih [16],
and independently, Sanders and Zhao [12], gave a new proof of this conjecture.

Borodin [1] proved that every plane graph Gwith ∆(G) ≥ 10 is edge-face (∆(G) + 1)-colorable. Recently, the condition
that∆(G) ≥ 10 is reduced to∆(G) = 9 by Sereni and Stehlík [13], and independently, byMacon [8], and further to∆(G) = 8
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by Kang et al. [6]. These results imply that every plane graph G with ∆(G) ≥ 7 is edge-face (∆(G) + 2)-colorable. Sanders
and Zhao [11] proved that every plane graph G with ∆(G) = 3 is edge-face 5-colorable. More recently, Chen, Raspaud and
Wang [2] proved that every plane graph Gwith ∆(G) = 6 is edge-face 8-colorable.

In [17], Wang and Lih investigated the list edge-face coloring of plane graphs. They proved that every plane graph G
is edge-face (∆(G) + 3)-choosable. This is a reinforcement of the results in [10,12,14,16]. In this paper, we consider the
edge-face choosability of plane graph with large maximum degree. More precisely, we show the following:

Theorem 1. If G is a plane graph with ∆(G) ≥ 9, then χ L
ef (G) ≤ ∆(G) + 1.

Theorem 1 extends and improves the result of [1,13]. The organization of this paper is as follows. In Section 2, we collect
some notation and basic definitions used in the subsequent sections. In Section 3, we establish a structural lemma, which
plays a key role in the proof of the main result. The proof of Theorem 1 is postponed to Section 4. Some open problems are
proposed in Section 5.

2. Notation

Let G be a plane graph with δ(G) ≥ 2. For f ∈ F(G), we use b(f ) to denote the boundary walk of f and write
f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices of b(f ) in clockwise order. Repeated occurrences of a vertex are allowed.
The degree of a face is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. For
x ∈ V (G) ∪ F(G), let dG(x) denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively) is called
a k-vertex (k−-vertex, k+-vertex, respectively). Similarly, we can define k-face, k−-face and k+-face. When v is a k-vertex,
we say that there are k faces incident to v. However, these faces are not required to be distinct, i.e., v may have repeated
occurrences on the boundary walk of some of its incident faces. Sometimes, v is said to be a (a1, a2, . . . , ak)-vertex if it is
incident to k faces f1, f2, . . . , fk in clockwise order with dG(fi) = ai for i = 1, 2, . . . , k. However, some of these faces may be
identical.

For a face f ∈ F(G), letm(f ) denote the number of different faces incident to f andm4−(f ) denote the number of different
4−-faces incident to f , respectively. We say that f is light if f is adjacent to a 4−-face f ′, dG(f ) + m(f ) − m4−(f ) ≤ 9, and
b(f ) ∩ b(f ′) contains a 2-vertex.

For an edge e = xy ∈ E(G), let t(e) and q(e) denote the number of 3-faces and 4-faces incident to e, respectively. Let
l(e) = t(e) + q(e). If l(e) ≥ 1 and dG(x) + dG(y) − l(e) ≤9, then e is called a light edge. We say that e is triangular if t(e) ≥ 1,
and fully-triangular if t(e) = 2. Note that a fully-triangular edge is also a triangular edge, but not vice versa. A vertex v is
triangular (or fully-triangular) if each edge incident to v is triangular (or fully-triangular).

A cycle C of the plane graph G is called separating if both its interior and exterior contain at least one vertex of G. Let
V 0(C) denote the set of vertices in G that lie interior to C . A 2-vertex is called bad if it lies in a separating 3-cycle. Otherwise,
it is called good.

3. A structural lemma

Lemma 2. Let G be a connected plane graph with δ(G) ≥ 2. Then G contains one of the following configurations:

(C1) A 2-vertex incident to a 4−-face and a 5−-face.
(C2) A 4-cycle v1v2v3v4v1 satisfying that for i ∈ {1, 3}, vi is either a triangular 2-vertex or a (3, 4−, 4−)-vertex.
(C3) A good 2-vertex adjacent to a 5−-vertex.
(C4) A 5-face incident to an edge uv with dG(u) + dG(v) ≤ 9.
(C5) A light edge.
(C6) A light face.
(C7) A face f = [u1u2 · · · u2s] with s ≥ 2 such that for i = 1, 3, . . . , 2s − 1, dG(ui) = 2 and ui is incident to a 4−-face.

Proof. Assume to the contrary that the lemma is false and G is a counterexample. Then G is a connected plane graph with
δ(G) ≥ 2 and containing none of the configurations (C1)–(C7). To obtain a contradiction by discharging analysis, we need
to define a new graph H from G in the following way: If there are no bad 2-vertices in G, we put H = G. Otherwise, choose
a separating 3-cycle T with the least interior vertices and passing through a bad 2-vertex, and put H = G[V 0(T ) ∪ V (T )].
In the following, we call vertices in V 0(T ) internal vertices of H and vertices in V (T ) T -vertices of H (if T exists). For each
v ∈ V 0(T ), it is evident that dH(v) = dG(v). Since G contains no (C3), there are no two adjacent internal 2-vertices in H .

Because G contains no (C1) and (C5), the following Claim 1 holds automatically.

Claim 1. Let x and y be two adjacent internal vertices with l(xy) ≥ 1.

(1) If dH(x) = 2, then dH(y) ≥ 9.
(2) Assume that dH(x) = 3. If l(xy) = 2, then dH(y) ≥ 9; If l(xy) = 1, then dH(y) ≥ 8.
(3) Assume that dH(x) = 4. If l(xy) = 2, then dH(y) ≥ 8; If l(xy) = 1, then dH(y) ≥ 7.
(4) Assume that dH(x) = 5. If l(xy) = 2, then dH(y) ≥ 7; If l(xy) = 1, then dH(y) ≥ 6.
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