# The edge-face choosability of plane graphs with maximum degree at least 9 

Xiaoxue Hu ${ }^{\text {a }}$, Weifan Wang ${ }^{\text {a,* }}$, Yiqiao Wang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China<br>${ }^{\mathrm{b}}$ School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

## A R T I C L E I N F O

## Article history:

Received 2 September 2013
Received in revised form 11 March 2014
Accepted 14 March 2014
Available online 28 March 2014

Keywords:
Plane graph
Coloring
Edge-face choosability
Maximum degree


#### Abstract

A plane graph $G$ is said to be edge-face $k$-choosable if, for every list $L$ of colors satisfying $|L(x)|=k$ for $x \in E(G) \cup F(G)$, there exists a coloring which assigns to each edge and face a color from its list so that any adjacent or incident elements receive different colors. In this paper, we prove that every plane graph $G$ with maximum degree $\Delta(G) \geq 9$ is edge-face $(\Delta(G)+1)$-choosable.


© 2014 Elsevier B.V. All rights reserved.

## 1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges unless otherwise stated. A plane graph is a particular drawing in the Euclidean plane of a planar graph. For a plane graph $G$, we denote its vertex set, edge set, face set, maximum degree, and minimum degree by $V(G), E(G), F(G), \Delta(G)$ and $\delta(G)$, respectively.

A plane graph $G$ is edge-face $k$-colorable if $E(G) \cup F(G)$ can be colored with $k$ colors such that any two adjacent or incident elements receive different colors. The edge-face chromatic number $\chi_{e f}(G)$ of $G$ is defined to be the least integer $k$ such that $G$ is edge-face $k$-colorable.

A mapping $L$ is said to be an assignment for the plane graph $G$ if it assigns a list $L(x)$ of possible colors to each element $x$ in $E(G) \cup F(G)$. If $G$ has an edge-face coloring $\phi$ such that $\phi(x) \in L(x)$ for all elements $x$, then we say that $G$ is edge-face $L$ colorable or $\phi$ is an edge-face $L$-coloring of $G$. $G$ is edge-face $k$-choosable if it is edge-face $L$-colorable for every list assignment $L$ satisfying $|L(x)|=k$ for all elements $x \in E(G) \cup F(G)$. The list edge-face chromatic number $\chi_{e f}^{L}(G)$ of $G$ is the smallest integer $k$ such that $G$ is edge-face $k$-choosable. By definition, it is straightforward to derive that $\chi_{e f}^{L}(G) \geq \chi_{e f}(G) \geq \Delta(G)$.

The edge-face colorings of plane graphs were first studied by Jucovič [5] and Fiamčík [3], who investigated the case of 3 - and 4-regular plane graphs. In 1975, Mel'nikov [9] conjectured that every plane graph $G$ is edge-face $(\Delta(G)+3)$-colorable. Wang [15], and independently Hu et al. [4] confirmed the conjecture for the case $\Delta(G) \leq 3$. Wang and Zhang [18] further settled the case $\Delta(G)=4$. Two similar, yet independent, proofs of this conjecture were given by Waller [14] and Sanders and Zhao [10]. Both proofs made use of the Four-Color Theorem. Without applying the Four-Color Theorem, Wang and Lih [16], and independently, Sanders and Zhao [12], gave a new proof of this conjecture.

Borodin [1] proved that every plane graph $G$ with $\Delta(G) \geq 10$ is edge-face $(\Delta(G)+1)$-colorable. Recently, the condition that $\Delta(G) \geq 10$ is reduced to $\Delta(G)=9$ by Sereni and Stehlík [13], and independently, by Macon [8], and further to $\Delta(G)=8$

[^0]by Kang et al. [6]. These results imply that every plane graph $G$ with $\Delta(G) \geq 7$ is edge-face $(\Delta(G)+2)$-colorable. Sanders and Zhao [11] proved that every plane graph $G$ with $\Delta(G)=3$ is edge-face 5-colorable. More recently, Chen, Raspaud and Wang [2] proved that every plane graph $G$ with $\Delta(G)=6$ is edge-face 8-colorable.

In [17], Wang and Lih investigated the list edge-face coloring of plane graphs. They proved that every plane graph $G$ is edge-face $(\Delta(G)+3)$-choosable. This is a reinforcement of the results in $[10,12,14,16]$. In this paper, we consider the edge-face choosability of plane graph with large maximum degree. More precisely, we show the following:

Theorem 1. If $G$ is a plane graph with $\Delta(G) \geq 9$, then $\chi_{e f}^{L}(G) \leq \Delta(G)+1$.
Theorem 1 extends and improves the result of [1,13]. The organization of this paper is as follows. In Section 2, we collect some notation and basic definitions used in the subsequent sections. In Section 3, we establish a structural lemma, which plays a key role in the proof of the main result. The proof of Theorem 1 is postponed to Section 4 . Some open problems are proposed in Section 5.

## 2. Notation

Let $G$ be a plane graph with $\delta(G) \geq 2$. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of $f$ and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of $b(f)$ in clockwise order. Repeated occurrences of a vertex are allowed. The degree of a face is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. For $x \in V(G) \cup F(G)$, let $d_{G}(x)$ denote the degree of $x$ in $G$. A vertex of degree $k$ (at most $k$, at least $k$, respectively) is called a $k$-vertex ( $k^{-}$-vertex, $k^{+}$-vertex, respectively). Similarly, we can define $k$-face, $k^{-}$-face and $k^{+}$-face. When $v$ is a $k$-vertex, we say that there are $k$ faces incident to $v$. However, these faces are not required to be distinct, i.e., $v$ may have repeated occurrences on the boundary walk of some of its incident faces. Sometimes, $v$ is said to be a $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$-vertex if it is incident to $k$ faces $f_{1}, f_{2}, \ldots, f_{k}$ in clockwise order with $d_{G}\left(f_{i}\right)=a_{i}$ for $i=1,2, \ldots, k$. However, some of these faces may be identical.

For a face $f \in F(G)$, let $m(f)$ denote the number of different faces incident to $f$ and $m_{4^{-}}(f)$ denote the number of different $4^{-}$-faces incident to $f$, respectively. We say that $f$ is light if $f$ is adjacent to a $4^{-}$-face $f^{\prime}, d_{G}(f)+m(f)-m_{4^{-}}(f) \leq 9$, and $b(f) \cap b\left(f^{\prime}\right)$ contains a 2-vertex.

For an edge $e=x y \in E(G)$, let $t(e)$ and $q(e)$ denote the number of 3-faces and 4-faces incident to $e$, respectively. Let $l(e)=t(e)+q(e)$. If $l(e) \geq 1$ and $d_{G}(x)+d_{G}(y)-l(e) \leq 9$, then $e$ is called a light edge. We say that $e$ is triangular if $t(e) \geq 1$, and fully-triangular if $t(e)=2$. Note that a fully-triangular edge is also a triangular edge, but not vice versa. A vertex $v$ is triangular (or fully-triangular) if each edge incident to $v$ is triangular (or fully-triangular).

A cycle $C$ of the plane graph $G$ is called separating if both its interior and exterior contain at least one vertex of $G$. Let $V^{0}(C)$ denote the set of vertices in $G$ that lie interior to $C$. A 2-vertex is called bad if it lies in a separating 3-cycle. Otherwise, it is called good.

## 3. A structural lemma

Lemma 2. Let $G$ be a connected plane graph with $\delta(G) \geq 2$. Then $G$ contains one of the following configurations:
(C1) A 2-vertex incident to a $4^{-}$-face and a $5^{-}$-face.
(C2) A 4-cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ satisfying that for $i \in\{1,3\}$, $v_{i}$ is either a triangular 2-vertex or $a\left(3,4^{-}, 4^{-}\right)$-vertex.
(C3) A good 2-vertex adjacent to a $5^{-}$-vertex.
(C4) A 5-face incident to an edge $u v$ with $d_{G}(u)+d_{G}(v) \leq 9$.
(C5) A light edge.
(C6) A light face.
(C7) A face $f=\left[u_{1} u_{2} \cdots u_{2 s}\right]$ with $s \geq 2$ such that for $i=1,3, \ldots, 2 s-1, d_{G}\left(u_{i}\right)=2$ and $u_{i}$ is incident to a $4^{-}$-face.
Proof. Assume to the contrary that the lemma is false and $G$ is a counterexample. Then $G$ is a connected plane graph with $\delta(G) \geq 2$ and containing none of the configurations (C1)-(C7). To obtain a contradiction by discharging analysis, we need to define a new graph $H$ from $G$ in the following way: If there are no bad 2-vertices in $G$, we put $H=G$. Otherwise, choose a separating 3-cycle $T$ with the least interior vertices and passing through a bad 2-vertex, and put $H=G\left[V^{0}(T) \cup V(T)\right]$. In the following, we call vertices in $V^{0}(T)$ internal vertices of $H$ and vertices in $V(T) T$-vertices of $H$ (if $T$ exists). For each $v \in V^{0}(T)$, it is evident that $d_{H}(v)=d_{G}(v)$. Since $G$ contains no (C3), there are no two adjacent internal 2-vertices in $H$.

Because $G$ contains no (C1) and (C5), the following Claim 1 holds automatically.
Claim 1. Let $x$ and $y$ be two adjacent internal vertices with $l(x y) \geq 1$.
(1) If $d_{H}(x)=2$, then $d_{H}(y) \geq 9$.
(2) Assume that $d_{H}(x)=3$. If $l(x y)=2$, then $d_{H}(y) \geq 9$; If $l(x y)=1$, then $d_{H}(y) \geq 8$.
(3) Assume that $d_{H}(x)=4$. If $l(x y)=2$, then $d_{H}(y) \geq 8$; If $l(x y)=1$, then $d_{H}(y) \geq 7$.
(4) Assume that $d_{H}(x)=5$. If $l(x y)=2$, then $d_{H}(y) \geq 7$; If $l(x y)=1$, then $d_{H}(y) \geq 6$.

# https://daneshyari.com/en/article/4647272 

Download Persian Version:
https://daneshyari.com/article/4647272

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: wwf@zjnu.cn (W. Wang).

