Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Planar graphs with cycles of length neither 4 nor 7 are (3, 0, 0)-colorable^{*}

Huihui Li, Jinghan Xu, Yingqian Wang*

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, 321004, China

ARTICLE INFO

Article history: Received 20 August 2013 Received in revised form 11 March 2014 Accepted 13 March 2014 Available online 1 April 2014

Keywords: Planar graph Cycle Improper coloring

1. Introduction

ABSTRACT

Let d_1, d_2, \ldots, d_k be k non-negative integers. A graph G is (d_1, d_2, \ldots, d_k) -colorable if the vertex set of G can be partitioned into subsets V_1, V_2, \ldots, V_k such that the subgraph $G[V_i]$ induced by V_i has maximum degree at most d_i for $1 \le i \le k$. It is known that planar graphs with cycles of length neither 4 nor $k, k \in \{5, 6\}$, are (3, 0, 0)-colorable. In this paper, we show that planar graphs with cycles of length neither 4 nor 7 are also (3, 0, 0)-colorable. © 2014 Elsevier B.V. All rights reserved.

Let d_1, d_2, \ldots, d_k be k non-negative integers. A graph G is called *improperly* (d_1, d_2, \ldots, d_k) -colorable, or simply, (d_1, d_2, \ldots, d_k) -colorable, if we can use colors from $\{1, 2, \ldots, k\}$ to color the vertices of G such that $G[V_i]$, the subgraph of G induced by V_i , has maximum degree at most d_i , where V_i is the subset of vertices colored i for every $i \in \{1, 2, \ldots, k\}$. With this notion, the well-known Four Color Theorem [1,2] says that every planar graph is (0, 0, 0, 0)-colorable; the well-known Three Color Theorem of Grötzsch [5] says that every triangle-free planar graph is (0, 0, 0)-colorable. How about if we color C_i -free planar graphs with only three colors for $i \ge 4$? Steinberg conjectured [8] that every planar graph with cycles of length neither 4 nor 5 is also (0, 0, 0)-colorable. Motivated by Steinberg's conjecture, Lih et al. [7] proved that every planar graph with cycles of length neither 4 nor 1 for some $l \in \{5, 6, 7\}$ is (list) (1, 1, 1)-colorable. Dong and Xu [4] extended this to $l \in \{8, 9\}$. Motivated by Bordeaux conjecture (stronger than Steinberg's), Xu [9] proved that every planar graph with neither adjacent triangles nor cycle of length 5 is (1, 1, 1)-colorable. Recently, motivated by Steinberg's conjecture again, Chang et al. [3] proved that every planar graph with cycles of length neither 4 nor 5 is (3, 0, 0)-colorable. Very recently, Hill et al. [6] showed that every planar graph with cycles of length neither 4 nor 5 is (3, 0, 0)-colorable. In this paper, we show

Theorem 1. Every planar graph with cycles of length neither 4 nor 7 is (3, 0, 0)-colorable.

The rest of this section is devoted to some terminology and notation used later. All graphs considered in this paper are finite, simple and undirected. Call a graph *G* planar if it can be embedded into the plane so that its edges meet only at their ends. Any such a particular embedding of a planar graph is called a plane graph. For a plane graph *G*, we use *V*, *E*, *F* and δ to denote its vertex set, edge set, face set and minimum degree, respectively. For a vertex $v \in V$, let d(v) denote the *degree* of

http://dx.doi.org/10.1016/j.disc.2014.03.009 0012-365X/© 2014 Elsevier B.V. All rights reserved.

CrossMark

[☆] Supported by NSFC No. 11271335.

^{*} Corresponding author.

E-mail address: yqwang@zjnu.cn (Y. Wang).

v in G, i.e., the number of edges incident with v in G. Call v a k-vertex, a k^+ -vertex, or a k^- -vertex if $d(v) \ge k$, d(v) $\ge k$, or $d(v) \le k$, respectively. An edge $xy \in E$ is called a (d(x), d(y))-edge, and x is called a d(x)-neighbor of y. For a face $f \in F$, the length of the boundary of f, denoted d(f), is called the degree of f. Call f a k-face, a k^+ -face or a k^- -face if d(f) = k, $d(f) \ge k$, or $d(f) \le k$, respectively. We write $f = [v_1v_2 \dots v_k]$ if v_1, v_2, \dots, v_k are consecutive vertices on f in a cyclic order, and we say that f is a $(d(v_1), d(v_2), \dots, d(v_k))$ -face. A k-cycle is a cycle of length k. Here, a triangle is a 3-face. Call a vertex or an edge triangular if it is incident with a triangle; non-triangular otherwise. Call u a triangular neighbor of v if uv is a triangular edge. Let k be a positive integer. Call a vertex vk-triangular if it is incident with k non-adjacent triangles. In this paper, the non-adjacency of two triangles T_1 and T_2 incident with a vertex v in G is ensured by the fact that G has no 4-cycles. For the same reason, besides the edges of T_1 and T_2 , no edge in G connects T_1 and T_2 . Let T = [uvw] be a triangle of G. Call u, as well as w, a non-isolated neighbor of v, and u and w a couple of non-isolated neighbors of v. Call a neighbor v' of v isolated if no triangle in G contains vv'. Furthermore, v' is called an isolated k-neighbor of v if d(v') = k; and v is called a pendent neighbor of v' if d(v) = 3.

2. Reducible configurations

As usual, to *properly* color a vertex v means to assign v a color which has not been assigned to any neighbor of v. In this paper, to (3, 0, 0)-color, in short, to color, a vertex v, is to properly color v with 2 or 3, or color v with 1 when color 1 is used on the neighbors of v at most three times. Let G' be a subgraph of G, and φ a (3, 0, 0)-coloring of G'. Let $A \subset V(G')$, we define $\varphi(A) = \{\varphi(a) | a \in A\}$. Note that $\varphi(A)$ may be a multi-set of colors. Let v be a vertex of G. For convenience, we use $Im_{\varphi}(v, 1)$ to denote the number of neighbors of v being colored 1.

Suppose Theorem 1 is false. Let G = (V, E) be a counterexample to Theorem 1 with the fewest vertices. Clearly G is connected. Below are some structural properties of G.

Lemma 2.1 ([6]). $\delta(G) \ge 3$.

Lemma 2.2 ([6]). Every 3-vertex in G has at least one 6^+ -neighbor.

Let f = [uvw] be a 3-face. Call f poor if d(u) = d(v) = 3 and both the isolated neighbors of u and v have degrees at most 5; semi-poor if d(u) = d(v) = 3 and exactly one of the isolated neighbors of u and v has degree at most 5; rich otherwise. A poor 3-vertex is a 3-vertex that is on a poor or a semi-poor 3-face and has an isolated 5⁻-neighbor. By definition and Lemma 2.2, a poor 3-face has exactly two poor 3-vertices, a semi-poor 3-face has exactly one poor 3-vertex, and a rich 3-face has no poor 3-vertex.

Lemma 2.3 ([6]). Every (3, 3, 6⁻)-face in G is rich.

Lemma 2.4. If f = [uvw] is a (3, 3, 4)-face with d(u) = d(v) = 3 and d(w) = 4, then w has at least one 6⁺-neighbor.

Proof. Let w_1 and w_2 be the two neighbors of w not on f. Suppose both w_1 and w_2 are 5⁻-vertices. Without loss of generality, we may assume that $d(w_1) = d(w_2) = 5$. By the minimality of G, the graph G - v admits a (3, 0, 0)-coloring φ . Clearly, the three neighbors of v are colored distinct under φ , since otherwise v could be properly colored. If $\varphi(u) = 1$ or $\varphi(w) = 1$, then we could color v with 1 since at that time u or w has at most two neighbors colored 1. Thus the isolated neighbor of v is colored 1. By the symmetry of the colors 2 and 3, we may assume that $\varphi(w) = 2$ and $\varphi(u) = 3$.

Under this situation, at least one of w_1 and w_2 is colored 1, since otherwise, we could recolor w with 1, then color v with 2. Observe that if w_i is colored 1 and $Im(w_i, 1) = 3$, then we could recolor w_i with 2 or 3. So we may assume that, for $i = 1, 2, Im(w_i, 1) \le 2$ if w_i is colored 1. Now we can recolor w with 1 and then color v with 2. Giving a (3, 0, 0)-coloring of G, a contradiction. \Box

Lemma 2.5. Let v be a 2-triangular 7-vertex with seven 3-neighbors. If one of the two triangles incident with v is poor or semipoor, then the other is rich.

Proof. Let v_1, v_2, \ldots, v_7 be the seven 3-neighbors of v, where $T_1 = [vv_1v_2]$, $T_2 = [vv_3v_4]$ are the two triangles defining v to be 2-triangular. Assume that T_1 is poor or semi-poor with v_2 poor. Suppose T_2 is not rich with v_4 poor. For i = 1, 2, 3, 4, let v'_i be the isolated neighbor of v_i . By the definition of a poor vertex, $d(v'_i) \le 5$ for i = 2, 4. By the minimality of G, the graph $G - \{v, v_1, v_2, \ldots, v_7\}$ admits a (3, 0, 0)-coloring φ . We first extend φ to G - v in such way: for i = 1, 3, we properly color v_i with a color in $\{2, 3\} \setminus \{\varphi(v'_i)\}$. Then we properly color v_j for j = 2, 4, 5, 6, 7. We are going to show that we can get a (3, 0, 0)-coloring of G, a contradiction proving the lemma.

Since $\varphi(v_1)$, $\varphi(v_3) \in \{2, 3\}$, $Im_{\varphi}(v, 1) \leq 5$. On the other hand, $Im_{\varphi}(v, 1) \geq 4$, since otherwise v could be colored with 1. First suppose $Im_{\varphi}(v, 1) = 5$. If $\varphi(v_1) = \varphi(v_3)$, then we could color v with $\{2, 3\} \setminus \{\varphi(v_1)\}$. Otherwise we could recolor v_1 with a color in $\{1, \varphi(v_3)\} \setminus \{\varphi(v'_1)\}$, and then color v with $\varphi(v_1)$. Next suppose $Im_{\varphi}(v, 1) = 4$. By the symmetry of the colors 2 and 3, we may assume that $\varphi(N(v)) = \{1, 1, 1, 1, 2, 2, 3\}$. According to which vertex colored 3, there are three cases under consideration.

Download English Version:

https://daneshyari.com/en/article/4647274

Download Persian Version:

https://daneshyari.com/article/4647274

Daneshyari.com