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a b s t r a c t

Let d1, d2, . . . , dk be k non-negative integers. A graph G is (d1, d2, . . . , dk)-colorable if the
vertex set of G can be partitioned into subsets V1, V2, . . . , Vk such that the subgraph G[Vi]

induced by Vi has maximum degree at most di for 1 ≤ i ≤ k. It is known that planar graphs
with cycles of length neither 4 nor k, k ∈ {5, 6}, are (3, 0, 0)-colorable. In this paper, we
show that planar graphs with cycles of length neither 4 nor 7 are also (3, 0, 0)-colorable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let d1, d2, . . ., dk be k non-negative integers. A graph G is called improperly (d1, d2, . . . , dk)-colorable, or simply, (d1, d2,
. . . , dk)-colorable, if we can use colors from {1, 2, . . . , k} to color the vertices of G such that G[Vi], the subgraph of G induced
by Vi, hasmaximumdegree atmost di, where Vi is the subset of vertices colored i for every i ∈ {1, 2, . . . , k}. With this notion,
the well-known Four Color Theorem [1,2] says that every planar graph is (0, 0, 0, 0)-colorable; the well-known Three Color
Theorem of Grötzsch [5] says that every triangle-free planar graph is (0, 0, 0)-colorable. How about if we color Ci-free planar
graphswith only three colors for i ≥ 4? Steinberg conjectured [8] that every planar graphwith cycles of length neither 4 nor
5 is also (0, 0, 0)-colorable. Motivated by Steinberg’s conjecture, Lih et al. [7] proved that every planar graph with cycles of
length neither 4 nor l for some l ∈ {5, 6, 7} is (list) (1, 1, 1)-colorable. Dong and Xu [4] extended this to l ∈ {8, 9}. Motivated
by Bordeaux conjecture (stronger than Steinberg’s), Xu [9] proved that every planar graph with neither adjacent triangles
nor cycle of length 5 is (1, 1, 1)-colorable. Recently, motivated by Steinberg’s conjecture again, Chang et al. [3] proved that
every planar graph with cycles of length neither 4 nor 5 is (4, 0, 0)- and (2, 1, 0)-colorable. Very recently, Hill et al. [6]
showed that every planar graph with cycles of length neither 4 nor 5 is (3, 0, 0)-colorable; Xu and Wang [10] showed that
every planar graph with cycles of length neither 4 nor 6 is (3, 0, 0)-colorable. In this paper, we show

Theorem 1. Every planar graph with cycles of length neither 4 nor 7 is (3, 0, 0)-colorable.

The rest of this section is devoted to some terminology and notation used later. All graphs considered in this paper are
finite, simple and undirected. Call a graph G planar if it can be embedded into the plane so that its edges meet only at their
ends. Any such a particular embedding of a planar graph is called a plane graph. For a plane graph G, we use V , E, F and δ to
denote its vertex set, edge set, face set and minimum degree, respectively. For a vertex v ∈ V , let d(v) denote the degree of
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v in G, i.e., the number of edges incident with v in G. Call v a k-vertex, a k+-vertex, or a k−-vertex if d(v) = k, d(v) ≥ k, or
d(v) ≤ k, respectively. An edge xy ∈ E is called a (d(x), d(y))-edge, and x is called a d(x)-neighbor of y. For a face f ∈ F , the
length of the boundary of f , denoted d(f ), is called the degree of f . Call f a k-face, a k+-face, or a k−-face if d(f ) = k, d(f ) ≥ k,
or d(f ) ≤ k, respectively. We write f = [v1v2 . . . vk] if v1, v2, . . . , vk are consecutive vertices on f in a cyclic order, and we
say that f is a (d(v1), d(v2), . . . , d(vk))-face. A k-cycle is a cycle of length k. Here, a triangle is a 3-face. Call a vertex or an
edge triangular if it is incident with a triangle; non-triangular otherwise. Call u a triangular neighbor of v if uv is a triangular
edge. Let k be a positive integer. Call a vertex vk-triangular if it is incident with k non-adjacent triangles. In this paper, the
non-adjacency of two triangles T1 and T2 incident with a vertex v in G is ensured by the fact that G has no 4-cycles. For the
same reason, besides the edges of T1 and T2, no edge in G connects T1 and T2. Let T = [uvw] be a triangle of G. Call u, as well
as w, a non-isolated neighbor of v, and u and w a couple of non-isolated neighbors of v. Call a neighbor v′ of v isolated if no
triangle in G contains vv′. Furthermore, v′ is called an isolated k-neighbor of v if d(v′) = k; and v is called a pendent neighbor
of v′, or T = [uvw] is called a pendent 3-face of v′ if d(v) = 3.

2. Reducible configurations

As usual, to properly color a vertex v means to assign v a color which has not been assigned to any neighbor of v. In this
paper, to (3, 0, 0)-color, in short, to color, a vertex v, is to properly color v with 2 or 3, or color v with 1 when color 1 is used
on the neighbors of v at most three times. Let G′ be a subgraph of G, and ϕ a (3, 0, 0)-coloring of G′. Let A ⊂ V (G′), we define
ϕ(A) = {ϕ(a)|a ∈ A}. Note that ϕ(A) may be a multi-set of colors. Let v be a vertex of G. For convenience, we use Imϕ(v, 1)
to denote the number of neighbors of v being colored 1.

Suppose Theorem 1 is false. Let G = (V , E) be a counterexample to Theorem 1 with the fewest vertices. Clearly G is
connected. Below are some structural properties of G.

Lemma 2.1 ([6]). δ(G) ≥ 3. �

Lemma 2.2 ([6]). Every 3-vertex in G has at least one 6+-neighbor. �

Let f = [uvw] be a 3-face. Call f poor if d(u) = d(v) = 3 and both the isolated neighbors of u and v have degrees at most
5; semi-poor if d(u) = d(v) = 3 and exactly one of the isolated neighbors of u and v has degree at most 5; rich otherwise.
A poor 3-vertex is a 3-vertex that is on a poor or a semi-poor 3-face and has an isolated 5−-neighbor. By definition and
Lemma 2.2, a poor 3-face has exactly two poor 3-vertices, a semi-poor 3-face has exactly one poor 3-vertex, and a rich
3-face has no poor 3-vertex.

Lemma 2.3 ([6]). Every (3, 3, 6−)-face in G is rich.

Lemma 2.4. If f = [uvw] is a (3, 3, 4)-face with d(u) = d(v) = 3 and d(w) = 4, then w has at least one 6+-neighbor.

Proof. Letw1 andw2 be the twoneighbors ofw not on f . Suppose bothw1 andw2 are 5−-vertices.Without loss of generality,
we may assume that d(w1) = d(w2) = 5. By the minimality of G, the graph G − v admits a (3, 0, 0)-coloring ϕ. Clearly, the
three neighbors of v are colored distinct under ϕ, since otherwise v could be properly colored. If ϕ(u) = 1 or ϕ(w) = 1,
then we could color v with 1 since at that time u or w has at most two neighbors colored 1. Thus the isolated neighbor of v
is colored 1. By the symmetry of the colors 2 and 3, we may assume that ϕ(w) = 2 and ϕ(u) = 3.

Under this situation, at least one of w1 and w2 is colored 1, since otherwise, we could recolor w with 1, then color v
with 2. Observe that if wi is colored 1 and Im(wi, 1) = 3, then we could recolor wi with 2 or 3. So we may assume that, for
i = 1, 2, Im(wi, 1) ≤ 2 if wi is colored 1. Now we can recolor w with 1 and then color v with 2. Giving a (3, 0, 0)-coloring
of G, a contradiction. �

Lemma 2.5. Let v be a 2-triangular 7-vertex with seven 3-neighbors. If one of the two triangles incident with v is poor or semi-
poor, then the other is rich.

Proof. Let v1, v2, . . ., v7 be the seven 3-neighbors of v, where T1 = [vv1v2], T2 = [vv3v4] are the two triangles defining v to
be 2-triangular. Assume that T1 is poor or semi-poor with v2 poor. Suppose T2 is not rich with v4 poor. For i = 1, 2, 3, 4, let
v′

i be the isolated neighbor of vi. By the definition of a poor vertex, d(v′

i) ≤ 5 for i = 2, 4. By the minimality of G, the graph
G − {v, v1, v2, . . . , v7} admits a (3, 0, 0)-coloring ϕ. We first extend ϕ to G − v in such way: for i = 1, 3, we properly color
vi with a color in {2, 3} \ {ϕ(v′

i)}. Then we properly color vj for j = 2, 4, 5, 6, 7. We are going to show that we can get a (3,
0, 0)-coloring of G, a contradiction proving the lemma.

Since ϕ(v1), ϕ(v3) ∈ {2, 3}, Imϕ(v, 1) ≤ 5. On the other hand, Imϕ(v, 1) ≥ 4, since otherwise v could be colored with
1. First suppose Imϕ(v, 1) = 5. If ϕ(v1) = ϕ(v3), then we could color v with {2, 3} \ {ϕ(v1)}. Otherwise we could recolor
v1 with a color in {1, ϕ(v3)} \ {ϕ(v′

1)}, and then color v with ϕ(v1). Next suppose Imϕ(v, 1) = 4. By the symmetry of the
colors 2 and 3, we may assume that ϕ(N(v)) = {1, 1, 1, 1, 2, 2, 3}. According to which vertex colored 3, there are three
cases under consideration.
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