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a b s t r a c t

An LRMTS(v) is a large set consisting of v−2 pairwise disjoint resolvableMendelsohn triple
systems defined over the same v-element set. In this paper a new product construction for
LRMTS is displayed by using generalized LR-designs. Aswell, several newexistence families
of LRMTS are constructed via 3-wise balanced designs. Finally the existence result of LRMTS
is expanded by combining all the known constructions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of large sets constitutes an important part of combinatorial design theory. The remarkable work by Lu [19,20]
and Teirlinck [22] on the existence problem of large sets of Steiner triple systems inspired many researchers to investigate
large sets of varied forms. Many researchers devoted to the study of large sets of t-designswhere t ≥ 3, see [17] for a survey.
Meanwhile, some researchers put efforts into large sets of oriented triple systems,maybe further imposing certain restricted
property, such as resolvable restriction, with which we are concerned in this paper. Although the most classical existence
problem of large sets of Kirkman triple systems (LKTS) remains still verymuch open, a number of new constructions for LKTS
were developed, especially in the last two decades, see [3] for a recent survey. Enlightened by these approaches, we inves-
tigate the problem of large sets of resolvable Mendelsohn triple systems (LRMTS) and provide some new infinite existence
families. We now give the definition of LRMTS and include some known results.

Let X be a finite set of v elements. An ordered pair of X is always a pair (x, y)with x, y ∈ X and x ≠ y. A cyclic triple on X is
a set of three ordered pairs (x, y), (y, z) and (z, x) of X , which is denoted by ⟨x, y, z⟩ (or ⟨y, z, x⟩, or ⟨z, x, y⟩). A Mendelsohn
triple system of order v, briefly by MTS(v), is a pair (X, B) where B is a collection of cyclic triples on X , called blocks, such
that every ordered pair of X belongs to exactly one block of B.

An MTS(v)(X, B) is called resolvable if its block set B can be partitioned into subsets (called parallel classes), each con-
taining every element of X exactly once. A resolvable MTS(v) is denoted by RMTS(v). An RMTS(v) exists if and only if
v ≡ 0 (mod 3) and v ≠ 6, see [1].

A large set of MTS(v)s, denoted by LMTS(v), is a collection {(X, Bi)}, where every (X, Bi) is an MTS(v) and all Bi’s form
a partition of all cyclic triples on X . It is easy to see that an LMTS(v) consists of v − 2 pairwise disjoint MTS(v)s. An LMTS(v)
exists if and only if v ≡ 0, 1 (mod 3) and v ≥ 3, v ≠ 6 [11,12,18]. An LRMTS(v) denotes an LMTS(v) in which eachmember
MTS(v) is resolvable.
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We now illustrate a direct construction for the smallest possible even order of LRMTS, that is, an LRMTS(12), which also
implies another design we will use in one of the constructions in this paper.

Example 1.1 ([15, Lemma 2.3]). There exists an LRMTS(12).
Construction. Let X = (Z5 ∪ {∞}) × I2 be the point set. An LRMTS(12) consists of ten pairwise disjoint RMTS(12)s, which
are developed from two base RMTS(12)s under the action of Z5. Firstly we construct twelve parallel classes of X and divide
them into two parts.

P0
1 : ⟨(3, 0), (4, 0), (∞, 0)⟩ ⟨(1, 0), (1, 1), (4, 1)⟩ ⟨(2, 0), (2, 1), (3, 1)⟩ ⟨(0, 0), (0, 1), (∞, 1)⟩

P0
2 : ⟨(3, 1), (0, 1), (4, 1)⟩ ⟨(1, 1), (1, 0), (4, 0)⟩ ⟨(2, 1), (2, 0), (3, 0)⟩ ⟨(∞, 1), (∞, 0), (0, 0)⟩

P0
3 : ⟨(2, 0), (1, 1), (∞, 1)⟩ ⟨(4, 1), (4, 0), (1, 0)⟩ ⟨(3, 0), (3, 1), (2, 1)⟩ ⟨(0, 1), (0, 0), (∞, 0)⟩

P0
4 : ⟨(2, 1), (0, 0), (1, 0)⟩ ⟨(4, 0), (4, 1), (1, 1)⟩ ⟨(3, 1), (3, 0), (2, 0)⟩ ⟨(∞, 0), (∞, 1), (0, 1)⟩

P0
5 : ⟨(1, 0), (3, 0), (∞, 0)⟩ ⟨(1, 1), (0, 1), (3, 1)⟩ ⟨(4, 0), (2, 1), (∞, 1)⟩ ⟨(4, 1), (0, 0), (2, 0)⟩

P0
8 : ⟨(3, 1), (4, 0), (∞, 1)⟩ ⟨(2, 0), (0, 1), (1, 0)⟩ ⟨(2, 1), (1, 1), (∞, 0)⟩ ⟨(3, 0), (0, 0), (4, 1)⟩

P1
1 : ⟨(3, 1), (4, 1), (∞, 1)⟩ ⟨(1, 0), (1, 1), (4, 0)⟩ ⟨(2, 0), (2, 1), (3, 0)⟩ ⟨(0, 0), (0, 1), (∞, 0)⟩

P1
2 : ⟨(3, 0), (0, 0), (4, 0)⟩ ⟨(1, 1), (1, 0), (4, 1)⟩ ⟨(2, 1), (2, 0), (3, 1)⟩ ⟨(∞, 1), (∞, 0), (0, 1)⟩

P1
3 : ⟨(2, 1), (1, 0), (∞, 0)⟩ ⟨(4, 1), (4, 0), (1, 1)⟩ ⟨(3, 0), (3, 1), (2, 0)⟩ ⟨(0, 1), (0, 0), (∞, 1)⟩

P1
4 : ⟨(2, 0), (0, 1), (1, 1)⟩ ⟨(4, 0), (4, 1), (1, 0)⟩ ⟨(3, 1), (3, 0), (2, 1)⟩ ⟨(∞, 0), (∞, 1), (0, 0)⟩

P1
5 : ⟨(1, 1), (3, 1), (∞, 1)⟩ ⟨(1, 0), (0, 0), (3, 0)⟩ ⟨(4, 1), (2, 0), (∞, 0)⟩ ⟨(4, 0), (0, 1), (2, 1)⟩

P1
8 : ⟨(3, 0), (4, 1), (∞, 0)⟩ ⟨(2, 1), (0, 0), (1, 1)⟩ ⟨(2, 0), (1, 0), (∞, 1)⟩ ⟨(3, 1), (0, 1), (4, 0)⟩.

For i = 1, 2 and j = 0, 1, let

P j
5+i = {⟨(2i

· x, u), (2i
· y, v), (2i

· z, w)⟩ : ⟨(x, u), (y, v), (z, w)⟩ ∈ P j
5},

where the calculation is reduced in Z5 and x · ∞ = ∞ for any x ∈ Z5.
Similarly, for i = 1, 2, 3 and j = 0, 1, let

P j
8+i = {⟨(2i

· x, u), (2i
· y, v), (2i

· z, w)⟩ : ⟨(x, u), (y, v), (z, w)⟩ ∈ P j
8}.

Then defineBj =
11

i=1 P
j
i for j = 0, 1. It is not difficult to check that each of (X, Bj) (j = 0, 1) forms an RMTS(12). Finally

developing B0 and B1 under (Z5, +) yields an LRMTS(12). �

Up to now, the known odd orders of LRMTS are mostly derived from LKTS and some direct constructions are given in
[10,16]. For even orders, we refer to [15] for a few direct constructions using finite fields. The presently known recursive
constructions are very limited, including a tripling construction and a product construction, see [2,23]. In the following
lemma, we include a few known results of LRMTS.

Lemma 1.2. There exists an LRMTS(3v), where
(1) [3,10,15,16] v ∈ {1, 4, 7, 8, 11, 13, 16, 20, 21, 23, 25, 28, 32, 35, 37, 40, 41, 43, 47, 53, 55, 61, 65, 67, 68, 71, 76, 77,

91, 92, 93, 95, 97, 100, 103, 113, 121}


{22g+125h
+ 1 : g + h ≥ 1, g, h ≥ 0},

(2) [13,14] 3v = 7n
+ 2, 13n

+ 2, 25n
+ 2, 24n

+ 2, or 26n
+ 2 for n ≥ 1, or

(3) [3,25] v is the product of some elements in L = {4m25n
− 1 : m ≥ 1, n ≥ 0}


{4 × 7s

− 1 : s ≥ 0}


{2qt + 1 : t ≥ 0,
q ≡ 7 (mod 12) and q is a prime power}.

In this paper we utilize partitionable Mendelsohn candelabra systems with certain resolvable property to construct
LRMTS, which are introduced as preliminaries in Section 2. A new product construction is displayed in Section 3 to make
it possible to extend the known designs to produce new ones. In Section 4 several new existence families of LRMTS are
constructed via 3-wise balanced designs. Finally in Section 5we combine the recursive constructionswith the known LRMTS
to reach a conclusion.

2. Partitionable Mendelsohn candelabra systems with resolvable properties

The partitionable candelabra system is an important design to produce large sets of Steiner triple systems, see [7]. Aswell,
partitionable candelabra systems with certain specified resolvable property are employed extensively to construct large
sets of Kirkman triple systems, see for instance [3]. We in this paper impose necessary resolvable restriction to partitionable
Mendelsohn candelabra systems to form large sets of resolvable Mendelsohn triple systems.

Let X be a v-element set and K be a set of positive integers. A t-wise balanced design (t-BD) of order v is a pair (X, A)
where A is a family of subsets of X (called blocks) such that each t-element subset of X is contained in exactly one block of
A. An S(t, K , v) denotes a t-BD of order v with block sizes from the set K . The notation S(t, k, v) is often used for K = {k}.
An S(2, 3, v) is a Steiner triple system of order v, or STS(v).
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