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a b s t r a c t

In this paper, we determine the crossing number of Km \ e by the construction method for
m ≤ 12 and apply the zip product to obtain that cr(Km�Pn) = (n − 1)cr(Km+2 \ e) +

2cr(Km+1) for n ≥ 1. Furthermore, we have

cr(Km�Pn) =
1
4


m + 1

2


m − 1

2


m − 2

2


n

m + 4

2


+


m − 4

2


for n ≥ 1, 1 ≤ m ≤ 10, which is consistent with Zheng’s conjecture for the crossing
number of Km�Pn.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are simple, finite and undirected and are also connected. For graph theory terminology not
defined here, we direct the reader to [7]. A drawing of a graph G = (V , E) is a mapping φ that assigns to each vertex in
V a distinct point in the plane and to each edge uv in E a continuous arc (i.e., a homeomorphic image of a closed interval)
connecting φ(u) and φ(v), without passing through the image of any other vertex. In addition, we impose the following
conditions on a drawing: (1) no three edges have an interior point in common, (2) if two edges share an interior point p,
then they cross at p, and (3) any two edges of a drawing have only a finite number of crossings (common interior points).
The crossing number cr(G) of a graph G is the minimum number of edge crossings in any drawing of G. Let D be a drawing
of the graph G, and we denote the number of crossings in D by crD(G). For more on the theory of crossing numbers, we
refer the reader to [8]. The Cartesian product G�H of graphs G and H has the vertex set V (G) × V (H) and the edge set
E(G�H) = {(x1, y1)(x2, y2)|x1 = x2 and y1y2 ∈ E(H) or y1 = y2 and x1x2 ∈ E(G)}.

The investigation of the crossing number of a graph is a classical but very difficult problem (for example, see [8]). In
fact, computing the crossing number of a graph is NP-complete [9], and the exact values are known only for very restricted
classes of graphs. The crossing numbers of the Cartesian products of graphs have been studied since 1973, when Harary
et al. [12] conjectured that cr(Cm�Cn) = (m − 2)n for 3 ≤ m ≤ n. This conjecture has been verified in [1,20–23]
for m ≤ 7, n ≥ m. Glebsky and Salazar [10] also showed that the conjecture holds for n ≥ m(m + 1) and m ≥ 3.
Klešč [15] determined the crossing numbers of the products of all 4-vertex graphs with paths and stars except cr(K1,3�Pn),
which was earlier determined by Jendroľ and Ščerbová [13], who also obtained cr(K1,3�Cn) for n ≥ 1. In their paper, they
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conjectured that cr(Sm�Pn) = (n − 1)⌊m
2 ⌋⌊

m−1
2 ⌋ for m, n ≥ 1. For general n, the conjecture was recently confirmed by

Bokal in [5]. Beineke and Ringeisen [3,4] determined the crossing numbers of the products of all 4-vertex graphswith cycles.
Klešč [16–18] determined the crossing numbers of the products of all 5-vertex graphs with paths. In particular, he proved
that cr(K5�Pn) = 6n for n ≥ 1 in [16]. Zheng et al. [26] recently proved that cr(K6�Pn) = 15n + 3 for n ≥ 1 and

cr(Km�Pn) ≥ (n − 1)cr(Km+2 \ e) + 2cr(Km+1). (1.1)

In their paper, for n ≥ 1, they conjecture that
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. (1.2)

In this contribution, we show that equality holds in (1.1) for m ≥ 1 and conjecture that (1.2) holds for 1 ≤ m ≤ 10.
The approach is seemingly new. To obtain the crossing number of Km \ e, we construct a drawing of Km from the drawing
of Km \ e and obtain two lower bound expressions of cr(Km \ e) by the standard counting method used in [14,25]. To prove
that equality holds in (1.1), we introduce the zip product operation that was used in [2,5,6,24] and prove a lemma about it
with similar sufficient conditions to the ones in [5].

2. Some definitions and lemmas

Definition 2.1. For a graph G, let A, B ⊆ E(G); then, for a drawing φ of G, let

crφ(A, B) =


a∈A,b∈B

|φ(a) ∩ φ(b)|.

Additionally, let crφ(A, A) = crφ(A).

Informally, crφ(A, B) denotes the number of crossings between every pair of edges where one edge is in A and the other
in B.

For three mutually disjoint subsets A, B, C ⊂ E(G), the identities

crφ(A ∪ B) = crφ(A) + crφ(B) + crφ(A, B) (2.1)

and

crφ(A, B ∪ C) = crφ(A, B) + crφ(B, C) (2.2)

are noted.
Let Gi, i = 1, 2, be a graph with a vertex vi ∈ V (Gi) whose neighborhood Ni = NGi(vi) has size d. A zip function of graphs

G1 and G2 at vertices v1 and v2 is a bijection σ : N1 → N2. The zip product G1 ⊙σ G2 of graphs G1 and G2 according to σ is
obtained from the disjoint union of G1 − v1 and G2 − v2 by adding the edges uσ(u), u ∈ N1.

A drawing Di of the graph Gi (i = 1, 2) defines (up to a circular permutation) a bijection πi : Ni → {1, 2, . . . , d} that
respects the edge rotation around vi in Di. The zip function of drawings D1 and D2 at vertices v1 and v2 is σ : N1 → N2,
σ = π−1

2 π1. The zip product D1 ⊙σ D2 of D1 and D2 according to σ is obtained from D1 by adding a mirrored copy of D2
that has v2 incident with the infinite face disjointly into some face of D1 incident with v1 by removing vertices v1 and v2
and small disks around them from the drawings and then joining the edges according to the function σ . For more detail, we
refer the reader to [5,6]. For this construction, the following lemmas hold:

Lemma 2.1 ([5]). For i = 1, 2, let Di be an optimal drawing of Gi, let vi ∈ V (Gi) be a vertex of degree d, and let σ be a zip
function of D1 and D2 at v1 and v2. Then, cr(G1 ⊙σ G2) ≤ cr(G1) + cr(G2).

Let Sn = K1,n be a star graph with n vertices of degree 1 (called the leaves of the star) and one vertex of degree n
(the center). Let G be a graph and S ⊆ V (G), |S| = n. We say that S is k-star-connected in G if there exist k disjoint sets
F1, F2, . . . , Fk ⊆ E(G) such that either G[Fi] is a subdivision of Sn with S being the leaves or G[Fi] is a subdivision of Sn−1 with
all its leaves and the center belonging to S.

Lemma 2.2 ([5]). Let G1 andG2 be disjoint graphs, vi ∈ V (Gi), deg(vi) = d, and let the neighborhoodNi of vi be 2-star-connected
in Gi − vi, i = 1, 2. Then, cr(G1 ⊙σ G2) ≥ cr(G1) + cr(G2) for any bijection σ : N1 → N2.

Lemma 2.3 ([26]). cr(Km \ e) ≤
1
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Some of the proofs in this paper are based on these results for the crossing numbers of complete graphs, more precisely
as follows:

Conjecture 2.1 ([11]). cr(Km) =
1
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.

It has been proven by Guy [11] form ≤ 10 and by Pan and Richter [19] form = 11, 12, respectively.
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