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a b s t r a c t

Using recent results concerning tactical decompositions of t-designs with t > 2, we make
a step forward on the long-standing question about the existence of a simple 3-(16, 7, 5)
design; if such a design exists, then its full automorphism group has order a power of 2,
possibly equal to 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The smallest v for which the existence of a 3-design of order v is undecided is 16; indeed a 3-(16, 7, 5) design is still
unknown [7]. Thus to solve this intriguing existence problem has turned out to be a challenge.

So far, the published results on this problem bring negative answers if some additional properties on the automorphism
group of the desired design are assumed. In this article we also answer in the negative if we wanted to prescribe an auto-
morphism of order three.

In [3] Z. Eslami showed that a simple 3-(16, 7, 5) design with an automorphism of prime order p ≥ 5 does not exist. This
result was obtained by determining, up to isomorphism, all 2-(15, 6, 5) designs possessing an automorphism of prime order
p ≥ 5 and then showing that none of these 1454 designs can be the derived design of a 3-(16, 7, 5) design.

At this moment, to classify all 2-(15, 6, 5) designs with an automorphism of order 3 seems to be unfeasible. Thus, for
extending Eslami result to p ≥ 3 we had to follow a new strategy. Indeed our proof is based on tactical decompositions [2].
They have been crucial for the construction of many 2-designs [5,8], but we are not aware of existence (or non-existence)
results about t-designs with t > 2 obtained via them. The present article allowed the author to show the effectiveness of
the equations for coefficients of tactical decomposition matrices obtained in [8,9]. Indeed they have been the key tool for
the main result. Note that we are now able to state the following theorem.

Theorem 1.1. If a simple 3-(16, 7, 5) design exists, then the order of its full automorphism group is a power of 2.

We point out that our technique might also be used for proving that a putative 3-(16, 7, 5) design D is necessarily rigid.
For this, it would be enough to show that the system of equations arising from the tactical decomposition associated with
an automorphism of D of order 2 leads to an absurd. On the other hand we expect that the computations are extremely
demanding in view of the larger sizes of the corresponding tactical decomposition matrix K . We also point out that similar
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arguments could be applied to get informations on the full automorphism group of other t-designs with t > 2. The most
natural thing would be to consider a 3-(17, 7, 7) design whose existence is also in doubt (see Remark 4.45 in [7]). Here the
reason for which we also expect too demanding computations is that the number of blocks, that is 136, is rather larger than
the number of blocks of a 3-(16, 7, 5) design.

2. Preliminary results

Let t, v, k, λt be positive integers with v > k ≥ t . A t-(v, k, λt) design is a finite incidence structure D = (P , B), where
P is a set of v elements called points, and B is a multiset of k-subsets of P called blocks such that every set of t distinct
points is contained in precisely λt blocks. A design is said to be simple if there are no repeated blocks. One says that a point
P ∈ P is incident with a block B ∈ B if P ∈ B. The set of all blocks of D containing a given set S of points will be denoted by
IS . If S = {P} is a singleton, we will simply write IP rather than I{P}.

It is known that every t-(v, k, λt) design is also an s-(v, k, λs) design, 0 ≤ s < t , where λs = λt


v−s
t−s


/


k−s
t−s


. Applying

this for s = 1 and s = 0 one finds, in particular, that |IP | = λ1 for every point P , and that |B| = λ0.
In view of the above paragraph λs must be an integer for 0 ≤ s < t; these are the trivial necessary conditions for the

existence of a t-(v, k, λt) design. Note, in particular, that the parameters 3-(16, 7, 5) satisfy these conditions:
λ0 = 80, λ1 = 35, λ2 = 14. (1)

An automorphism of a design D = (P , B) is a permutation on P leaving B invariant. The set AutD of all automor-
phisms of D is a group under composition which is called the full automorphism group of D . The group generated by an
automorphism α is denoted by ⟨α⟩. Obviously, if α ∈ AutD , then ⟨α⟩ ≤ AutD .

For an automorphism α ∈ AutD , we denote by fix(α) the set of points of D fixed by α and, similarly, by Fix(α) the set
of blocks of D fixed by α. Throughout this article, we shall refer to the orbits of P or B under G as the point orbits or block
orbits of D under G, respectively.

A decomposition of a design D = (P , B) is a pair of partitions
P = P1 ⊔ · · · ⊔ Pm

B = B1 ⊔ · · · ⊔ Bn

of the point set and the block set, respectively. The decomposition is said to be tactical if there exist nonnegative integers ρij
and κij, i = 1, . . . ,m, j = 1, . . . , n, such that each point of Pi lies in precisely ρij blocks of Bj, and each block of Bj contains
precisely κij points from Pi. The matrices R = [ρij] and K = [κij] are the corresponding tactical decomposition matrices.

There are two trivial examples of tactical decompositions; one is obtained by putting n = m = 1, and the other one by
partitioning both P and B into singletons.

A non-trivial tactical decomposition of D can be obtained by considering the action of an automorphism group of D on
D . For further reading on the subject of t-designs and automorphism groups we refer the reader to [1,2,4,6]. Here we give
well-known properties that shall be used extensively in our arguments.

Theorem 2.1. Let G be an automorphism group of a design D . Then the point orbits of D under G and the block orbits of D
under G form a tactical decomposition of D .

Lemma 2.2. Let G = ⟨α⟩ be a cyclic automorphism group of a design D , and let

P = P1 ⊔ · · · ⊔ Pm, B = B1 ⊔ · · · Bn,

be the associated tactical decomposition of the orbits of D under G. Then the following holds.
(a) For each point orbit Pi, the set IPi is a disjoint union of block orbits of D under G.
(b) Every block B ∈ Fix(α) is a disjoint union of point orbits of D under G.

The entries ρij and κij of the tactical decomposition matrices are related by the formula

|Pi| · ρij = |Bj| · κij (2)
which can be easily obtained by means of a double counting of the size of Pi × Bj. These entries also satisfy the system of
equations given in the following theorem. We recall the reader that a Stirling number of the second kind is the number of
ways to partition a set of n elements into k non-empty subsets.

Theorem 2.3 ([9]). Let (P , B) be a t-(v, k, λt) design with a tactical decomposition

P = P1 ⊔ · · · ⊔ Pm, B = B1 ⊔ · · · ⊔ Bn.

Let Pi1 , . . . , Pis be mutually distinct with 1 ≤ s ≤ t and let m1, . . . ,ms be positive integers such that m1 + · · · +ms ≤ t. Then
the entries of the associated tactical decomposition matrices R = [ρij] and K = [κij] satisfy the following equation in which

 u
v


denotes a Stirling number of the second kind and (u)v := u(u − 1) · · · (u − v + 1) denotes a falling factorial,
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