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a b s t r a c t

Let G be a finite simple graph. For an integer k ≥ 1, a radio k-coloring of G is an assignment
f of non-negative integers to the vertices of G satisfying the condition | f (u) − f (v) |≥

k + 1 − d(u, v) for any two distinct vertices u, v of G. The span of f is the largest integer
assigned to a vertex of G by f and radio k-chromatic number of G, denoted by rck(G),
is the minimum span over all radio k-colorings of G. For k = 2, the radio k-coloring
becomes L(2, 1) coloring problem. On the other hand, path covering problem deals with
finding minimum number of vertex disjoint paths required to exhaust all the vertices of G.
Georges et al. (1994) explored an elegant relation between L(2, 1)-coloring problem and
path covering problem. As an extension of their work, we characterize the radio k-coloring
problem for any k ≥ 2 of a graph G by the path covering problem of Gc , where either G is
triangle free or there is a Hamiltonian path in each component of Gc . As an application, for
any such graph, if the exact value or an upper bound is known for any rcp(G), p ≥ 2, we
can get the exact value or an upper bound of rck(G) for all k ≥ 2. Determination of radio
k-chromatic numbers of completemulti-partite graphs, a certain family of circulant graphs
and join of circulant graphs of a certain family are among some other applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many graph coloring problems stem from a problem widely known as the frequency assignment problem (FAP) in
communication network. In FAP, frequencies (non-negative integers) are assigned to the transmitters in a wireless network
in an economic way. But as the proximity of transmitters increases, the mutual differences among the frequencies allotted
to them should be greater to avoid interference. So the task is to minimize the span, i.e., the maximum frequency assigned,
while satisfying the interference constraints. Hale [11] modelled this as a graph coloring problem. Roberts [24] proposed
a variation of this problem taking a cue from which Griggs and Yeh [10] introduced L(p1, p2, . . . , pm)-coloring of a simple
graph G = (V , E) which is a function f : V → N such that |f (u)− f (v)| ≥ pi when d(u, v) = i, for i = 1, 2, . . . ,m, where N
is the set of all non-negative integers. Interestingly, for a simple finite graph G and for any k ≥ 1, if pi = k− i+1, 1 ≤ i ≤ m,
the problembecomes the radio k-coloring problem introduced by Chartrand et al. [4,6]which findsmotivation in FMchannel
assignments. In other words, ifN is the set of all non-negative integers, then for any positive integer k ≥ 1, a radio k-coloring
f of a finite simple graph G is a mapping f : V → N such that for any two vertices u, v in G,

|f (u) − f (v)| ≥ k + 1 − d(u, v). (1)
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The span of a radio k-coloring f , denoted by span(f), is (maxv∈V f (v) − minv∈V f (v)) and the radio k-chromatic number of
G, denoted by rck(G) is defined as minf {span(f ) : f is a radio k-coloring of G}. Without loss of generality, we shall assume
minv∈V f (v) = 0 for any radio k-coloring f on G. Any radio k-coloring f on G with span rck(G) is referred as rck(G)-coloring
or simply rck-coloring (when there is no confusion regarding the underlying graph).

So far radio k-coloring of graphs has been studied for k ≥ 2·diam(G)−2, k = diam(G), k = diam(G)−1, k = diam(G)−2,
k = 3, k = 2. For k = diam(G), k = diam(G) − 1 and k = diam(G) − 2, the radio k-coloring is referred as radio coloring,
antipodal coloring and near-antipodal coloring respectively while the corresponding radio k-chromatic numbers are known
as radio number, antipodal number and near-antipodal number of G respectively. When k = 2, the problem reduces to the
L(2, 1)-coloring problem introduced by Griggs and Yeh [10]. Note that rc2(G) is sometimes denoted as λ2,1(G) or λ(G).

On the other hand, a path covering of a graph G is a set of vertex disjoint paths through all the vertices of G. A path
covering of minimum cardinality of G is called a minimum path covering of G and its size is called the path covering number
of G, denoted by c(G). Finding a minimum path covering has applications in establishing ring protocols, codes optimization
and mapping parallel programs to parallel architectures [1,2,22,23].

2. Previous works

So far, the radio k-chromatic numbers are known for very few families of graphs for specified values of k. Chartrand
et al. [4,5] studied the radio numbers of paths and cycles while Liu and Zhu [21] obtained their exact values. The radio
k-chromatic number of path Pn has been obtained in [21,13,15] for k = n−1, n−2, n−3 respectively. Kola and Panigrahi [16]
have determined rcn−4(Pn) for an odd integer n. Liu generalized the results for paths to spider, i.e., trees with at most one
vertex of degree greater than two, and obtained exact radio numbers in some specific cases [18]. Li et al. determined the radio
number of a completem-ary tree in [17]. Khennoufa et al. in [14] determined the radio number and the antipodal number of
any hypercube by using generalized binary Gray codes. Moreover for hypercubes, upper bounds and lower bounds for radio
k-chromatic numberswhen k ≥ 2 and their exact valueswhen k ≥ 2·diameter−2were obtained in [12]. Liu et al. in [19,20]
studied radio numbers of squares of cycles and paths respectively. For powers of cycles i.e. C r

n , Saha et al. obtained antipodal
numbers for some values of n and r and bounds for the remaining cases [25].

It may be perceived that finding radio k-chromatic numbers, for any k ≥ 2, even for paths, cycles and their powers is
a challenging task. Since almost all graphs are asymmetric (i.e. its automorphism group is the identity group) [9], finding
radio k-chromatic number for general graphs for any k ≥ 2 is arguably a much more difficult job. Even in the literature, up
to the best of our knowledge, there is no theoretical upper bound of rck(G) for any graph G and for any k ≥ 3. For any graph
G, it was proved in [3] that rc2(G) ≤ ∆2

+ ∆ and conjectured in [10] that rc2(G) ≤ ∆2, ∆ being the maximum degree in G.

3. Our contributions

In [8], Georges et al. investigated the relationship between rc2(G) and c(Gc), where Gc is the complement of the graph G,
and established the following beautiful results. In that paper, rc2(G) was denoted by λ(G).

Theorem 3.1 ([8]). Let G be a graph with n vertices.
(i) λ(G) ≤ (n − 1) if and only if c(Gc) = 1.
(ii) Let r be an integer, r ≥ 2. Then λ(G) = n + r − 2 if and only if c(Gc) = r.

Let G∗ be the collection of all finite simple graphs. Let G1 and G2 be two families of graphs defined by G1 = {G ∈ G∗
|

G is triangle free} and G2 = {G ∈ G∗
| each component in Gc has a Hamiltonian path}. In this paper we extend the above

result for any k ≥ 2 and for any graph which is either in G1 or in G2. In fact we have obtained an upper bound for rck(G)
in terms of c(Gc) for any graph G, where Gc is the complement of the graph G. For a graph G ∈ G1 ∪ G2 and for k ≥ 2, we
show this upper bound to be a characterization for the existence of a Hamiltonian path in Gc and otherwise, i.e., if there
is no Hamiltonian path in Gc , we then obtain a closed formula for rck(G). Consequently for any graph G in G1 ∪ G2, if the
exact value or an upper bound is known for any rcp(G), p ≥ 2, we can get the exact value or an upper bound of rck(G) for all
k ≥ 2. Other applications include determining radio k-chromatic numbers of complete multi-partite graphs, certain family
of circulant graphs and join of circulant graphs of a certain family.

4. Preliminaries

Throughout this paper, unless otherwise stated, graphs are taken as finite and simple with at least two vertices. Let L be
a rck-coloring on a graph G = (V , E). An integer i ∈ {0, 1, . . . , rck(G)} is a hole in L if i is not assigned to any vertex of G by L.
Let Lki (G) = {v ∈ V |L(v) = i} and lki (G) = |Lki (G)|. We replace Lki (G) by Li and lki (G) by li if there is no confusion regarding G
and k. For a fixed k, the vertices of Lki are represented by v

i(k)
j (or vi

j when there is no confusion regarding k), 1 ≤ j ≤ li, and
if li = 1, we replace v

i(k)
j by vi(k) (or simply vi

j by vi if there is no confusion regarding k). In a rck-coloring L on G, a color i is
referred as a multiple color if li ≥ 2.

For definitions of Hamiltonian path, connectivity and independence number of a graph and disjoint union and join of
two graphs, the reader is referred to [26]. Note that connectivity and independence number of a graph G and disjoint union
and join of two graphs G, H are denoted by κ(G), α(G), G + H and G ∨ H respectively. The reader is further referred to [9]
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