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a b s t r a c t

A complete k-coloring of a graph G = (V , E) is an assignment ϕ : V → {1, . . . , k} of colors
to the vertices such that no two vertices of the same color are adjacent, and the union
of any two color classes contains at least one edge. Three extensively investigated graph
invariants related to complete colorings are theminimum andmaximum number of colors
in a complete coloring (chromatic number χ(G) and achromatic number ψ(G), respectively),
and the Grundy number Γ (G) defined as the largest k admitting a complete coloring ϕ with
exactly k colors such that every vertex v ∈ V of color ϕ(v) has a neighbor of color i for all
1 ≤ i < ϕ(v). The inequality chain χ(G) ≤ Γ (G) ≤ ψ(G) obviously holds for all graphs G.
A triple (f , g, h) of positive integers at least 2 is called realizable if there exists a connected
graph G with χ(G) = f , Γ (G) = g , and ψ(G) = h. In Chartrand et al. (2010), the list
of realizable triples has been found. In this paper we determine the minimum number of
vertices in a connected graphwith chromatic number f , Grundy number g , and achromatic
number h, for all realizable triples (f , g, h) of integers. Furthermore, for f = g = 3 we
describe the (two) extremal graphs for each h ≥ 6. For h ∈ {4, 5}, there are more extremal
graphs, their description is given as well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A complete coloring of a graph is an assignment of colors to the vertices in such a way that adjacent vertices receive
different colors, and there is at least one edge between any two color classes. In other words, the coloring is proper and the
number of colors cannot be decreased by identifying two colors.

Let G = (V , E) be any simple undirected graph. The minimum number of colors in a proper coloring is the chromatic
number χ(G), and all proper χ-colorings are necessarily complete. The maximum number of colors in a complete coloring is
the achromatic number ψ(G). Every graph admits a complete coloring with exactly k colors for all χ ≤ k ≤ ψ (Harary
et al. [15]). An important variant of complete coloring, called Grundy coloring or Grundy numbering, requires a proper
coloring ϕ : V → {1, . . . , k} such that every vertex v ∈ V has a neighbor of color i for each 1 ≤ i < ϕ(v). The largest
integer k for which there exists a Grundy coloring of G is denoted by Γ (G) and is called the Grundy number of G. Certainly,
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Γ (G) is sandwiched between χ(G) andψ(G). One should emphasize that χ(G) andψ(G) are defined in terms of unordered
colorings, i.e., permutation of colors does not change the required property of a coloring. On the other hand, in a Grundy
coloring the order of colors is significant.

Proper colorings have found a huge amount of applications and hence, besides their high importance in graph theory,
they are verywell motivated from the practical side, too. The chromatic number occurs in lots of optimization problems. The
achromatic number looks less practically motivated, nevertheless it expresses the worst case of a coloring algorithm which
creates a proper color partition of a graph in an arbitrary way and then applies the improvement heuristic of identifying two
colors as long as nomonochromatic edge is created. Grundy colorings have strongmotivation from game theory; moreover,
Γ (G) describes the worst case of First-Fit coloring algorithm when applied to a graph G if we do not know the graph in
advance, the vertices arrive one by one, and we irrevocably assign the smallest feasible color to each new vertex as a best
local choice. Then the number of colors required for a worst input order is exactly Γ (G). For this reason, Γ (G) is also called
the on-line First-Fit chromatic number of G in the literature. An overview of on-line colorings and a detailed analysis of the
First-Fit version is given in [4]. A more extensive survey on the subject can be found in [19]. The performance of First-Fit is
much better on the average than in the worst case. This is a good reason that it has numerous successful applications. This
nicely shows from a practical point of view that the Grundy number is worth investigating.

The definition of Grundy number is usually attributed to Christen and Selkow [10], although its roots date back to the
works of Grundy [13] four decades earlier; and in fact Γ (G) of an undirected graph G is equal to that of the digraph in which
each edge of G is replaced with two oppositely oriented arcs. In general, computing the Grundy number is NP-hard, and it
remains so even when restricted to some very particular graph classes, e.g., to bipartite graphs or complements of bipartite
graphs ([16,25], respectively). Actually, the situation is evenworse: there does not exist any polynomial-time approximation
scheme to estimate Γ (G) unless P = NP [20], and for every integer c it is coNP-complete to decide whether Γ (G) ≤ c χ(G),
and also whether Γ (G) ≤ c ω(G), where ω(G) denotes the clique number of G (see [1]). Several bounds on Γ (G) in terms of
other graph invariants were given, e.g., in [5,26,27]. On the other hand, by the finite basis theorem of Gyárfás et al. [14] the
problem of deciding whether Γ (G) ≥ k can be solved in polynomial time, when k is a fixed integer (see also [6] for results
on Grundy critical graphs). Moreover, there are known efficient algorithms to determine the Grundy number of trees [17]
and more generally of partial k-trees [23].

Concerning the achromatic number, on the positive side there exists a constant-approximation for trees [9] and a
polynomial-time exact algorithm for complements of trees [24]. But in a sense, the computation of ψ(G) is harder than
that of Γ (G). It is NP-complete to determine ψ(G) on connected graphs that are simultaneously interval graphs and co-
graphs [3], and even on trees [7,11]. Moreover, no randomized polynomial-time algorithm can generate with high proba-
bility a complete coloring with Cψ(G)/

√
n colors for arbitrarily large constant C , unless NP ⊆ RTime(npoly log n), and under

the same assumption ψ(G) cannot be approximated deterministically within a multiplicative lg1/4−ε n, for any ε > 0 [22],
although some o(n)-approximations are known [9,21].

The strong negative results above concerning algorithmic complexity also mean a natural limitation on structural de-
pendencies, for all the three graph invariants χ,Γ , ψ . On the other hand, quantitatively, the triple (χ,Γ , ψ) can take any
non-decreasing sequence of integers at least 2. (The analogous assertion for (χ, ψ) without Γ appeared in [2].) For exam-
ple, if χ = Γ = 2, then properly choosing the size of a union of complete graphs on two vertices will do for any given ψ .
Assuming connectivity, however, makes a difference. Let us call a triple (f , g, h) of integers with 2 ≤ f ≤ g ≤ h realizable
if there exists a connected graph G such that χ(G) = f , Γ (G) = g , and ψ(G) = h. It was proved by Chartrand et al. [8] that
a triple is realizable if and only if either g ≥ 3 or f = g = h = 2.

Herewe address the naturally arising question of smallest connected graphswith the given coloring parameters. Namely,
for a realizable triple (f , g, h), let us denote by n(f , g, h) the minimum order of a connected graph G with χ(G) = f ,
Γ (G) = g and ψ(G) = h. The lower bound n(f , g, h) ≥ 2h − f was proved in [8, Theorem 2.10] in the stronger form
2ψ − ω (where ω denotes clique number), and this estimate was also shown to be tight for g = h. On the other hand the
order of graphs constructed there to verify that the triple (f , g, h) is realizable was rather large, and had a high growth rate.
In particular, for every fixed f and g , the number of vertices in the graphs of [8] realizing (f , g, h) grows with h2 as h gets
large, while the lower bound is linear in h. For instance, the construction for f = g , described in [18], takes the complete
graph Kf together with a pendant path Pk, having properly chosen number of vertices k, and applies the facts that very long
pathsmakeψ arbitrarily large and that the removal of the endvertex of a path (or actually any vertex of any graph) decreases
ψ by at most 1, as proved in [12].

In this paper we determine the exact value of n(f , g, h) for every realizable triple (f , g, h), showing that the lower bound
2h − f is either tight or just one below optimum. It is easy to see that the complete graph Kf verifies n(f , f , f ) = f for all
f ≥ 2. For the other cases it will turn out that the formula depends on whether f < g . These facts are summarized in the
following two theorems; the case g = hwas already discussed in [8].

Theorem 1. For 2 ≤ f < g and for f = g = h, n(f , g, h) = 2h − f .

Theorem 2. For 2 < f = g < h, n(f , g, h) = 2h − f + 1.

Remark 1. As one can see, the minimum does not depend on g , apart from the distinction between f = g and f < g .
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