Planar graphs with girth at least 5 are (3, 5)-colorable

CrossMark

Ilkyoo Choi ${ }^{\text {a,* }}$, André Raspaud ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
b LaBRI UMR CNRS 5800, Universite Bordeaux I, 33405 Talence Cedex, France

A R T I C L E INFO

Article history:

Received 27 September 2013
Received in revised form 14 November 2014
Accepted 18 November 2014
Available online 6 January 2015

Keywords:

Improper coloring
Planar graphs
Discharging method

Abstract

A graph is $\left(d_{1}, \ldots, d_{r}\right)$-colorable if its vertex set can be partitioned into r sets V_{1}, \ldots, V_{r} where the maximum degree of the graph induced by V_{i} is at most d_{i} for each $i \in\{1, \ldots, r\}$. Let g_{g} denote the class of planar graphs with minimum cycle length at least g. We focus on graphs in g_{5} since for any d_{1} and d_{2}, Montassier and Ochem constructed graphs in g_{4} that are not $\left(d_{1}, d_{2}\right)$-colorable. It is known that graphs in g_{5} are $(2,6)$-colorable and $(4,4)$ colorable, but not all of them are $(3,1)$-colorable. We prove that graphs in g_{5} are $(3,5)$ colorable, leaving two interesting questions open: (1) are graphs in g_{5} also ($3, d_{2}$)-colorable for some $d_{2} \in\{2,3,4\} ?$ (2) are graphs in g_{5} indeed (d_{1}, d_{2})-colorable for all $d_{1}+d_{2} \geq 8$ where $d_{2} \geq d_{1} \geq 1$?

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $[n]=\{1, \ldots, n\}$. Only finite, simple graphs are considered. Given a graph G, let $V(G)$ and $E(G)$ denote the vertex set and edge set of G, respectively. A neighbor of a vertex v is a vertex adjacent to v, and let $N(v)$ denote the set of neighbors of v. The degree of v, denoted by $d(v)$, is $|N(v)|$. The degree of a face f, denoted by $d(f)$, is the length of a shortest boundary walk of f. A k-vertex, k^{+}-vertex, and k^{-}-vertex are vertices of degree k, at least k, and at most k, respectively. A k-face, k^{+}-face is a face of degree k, at least k, respectively. The girth of a graph is the length of a shortest cycle.

A graph is $\left(d_{1}, \ldots, d_{r}\right)$-colorable if its vertex set can be partitioned into r sets V_{1}, \ldots, V_{r} where the maximum degree of the graph induced by V_{i} is at most d_{i} for each $i \in[r]$; in other words, there exists a function $f: V(G) \rightarrow[r]$ where the graph induced by vertices of color i has maximum degree at most d_{i} for $i \in[r]$.

There are many papers that study $\left(d_{1}, \ldots, d_{r}\right)$-colorings of sparse graphs resulting in corollaries regarding planar graphs, sometimes with restrictions on the length of a smallest cycle. The well-known four color theorem [1,2] is exactly the statement that planar graphs are ($0,0,0,0$)-colorable. Cowen, Cowen, and Woodall [7] proved that planar graphs are $(2,2,2)$-colorable, and Eaton and Hull [8] and Škrekovski [11] proved that this is sharp by exhibiting non-($1, k, k)$-colorable planar graphs for each k. Thus, the problem is completely solved when $r \geq 3$.

Let g_{g} denote the class of planar graphs with girth at least g. Given any d_{1} and d_{2}, consider the following graph constructed by Montassier and Ochem [10]. Let $X_{i}\left(d_{1}, d_{2}\right)$ be a copy of $K_{2, d_{1}+d_{2}+1}$ where one part is $\left\{x_{i}, y_{i}\right\}$. Obtain $Y\left(d_{1}, d_{2}\right)$ in the following way: start with $X_{1}\left(d_{1}, d_{2}\right), \ldots, X_{d_{1}+2}\left(d_{1}, d_{2}\right)$ and identify $x_{1}, \ldots, x_{d_{1}+2}$ into x, and add the edges $y_{1} y_{2}, \ldots, y_{1} y_{d_{1}+2}$. It is easy to verify that $Y\left(d_{1}, d_{2}\right)$ is in g_{4} but it is not $\left(d_{1}, d_{2}\right)$-colorable.

Therefore, we focus on graphs in g_{5}. There are also many papers $[3,5,9,6,4,10]$ that investigate $\left(d_{1}, d_{2}\right)$-colorability for graphs in g_{g} for $g \geq 6$; see [10] for the rich history. For example, Borodin, Ivanova, Montassier, Ochem, and Raspaud [3]

[^0]constructed a graph in g_{6} (and thus also in g_{5}) that is not $(0, k)$-colorable for any k. The question of determining if there exists a finite k where all graphs in g_{5} are $(1, k)$-colorable is not yet known and was explicitly asked in [10]. On the other hand, Borodin and Kostochka [5] and Havet and Sereni [9], respectively, proved results that imply graphs in g_{5} are (2,6)-colorable and (4, 4)-colorable.

In this paper, we prove the following theorem, which is not implied by the aforementioned results.
Theorem 1.1. Planar graphs with girth at least 5 are (3,5)-colorable.
This solves one of the previously unknown cases of the following question.
Question 1.2. Are planar graphs with girth at least 5 indeed $\left(d_{1}, d_{2}\right)$-colorable for all $d_{1}+d_{2} \geq 8$ where $d_{2} \geq d_{1} \geq 1$?
The only remaining case of Question 1.2 is when $d_{1}=1$ and $d_{2}=7$. As mentioned before, interestingly enough, we do not know even if there is a finite k where graphs in g_{5} are $(1, k)$-colorable.

Since there are non- $(3,1)$-colorable graphs in g_{5} [10], Theorem 1.1 implies that the minimum d where graphs in g_{5} are (3, d)-colorable is in $\{2,3,4,5\}$; determining this d would be interesting.

In the figures throughout this paper, the white vertices do not have incident edges besides the ones drawn, and the black vertices may have other incident edges.

In Section 2, we prove structural lemmas for non- $\left(d_{1}, d_{2}\right)$-colorable graphs with minimum order. In Section 3, we reveal some more structures of minimum counterexamples to Theorem 1.1 by focusing on the case when $d_{1}=3$ and $d_{2}=5$. Finally, we prove Theorem 1.1 by using a discharging procedure in Section 4.

2. Non- $\left(d_{1}, d_{2}\right)$-colorable graphs with minimum order

In this section, we prove structural lemmas regarding non- $\left(d_{1}, d_{2}\right)$-colorable graphs with minimum order; let $H\left(d_{1}, d_{2}\right)$ be such a graph. It is easy to see that the minimum degree of (a vertex of) $H\left(d_{1}, d_{2}\right)$ is at least 2 and $H\left(d_{1}, d_{2}\right)$ is connected.

Given a (partial) coloring f of $H\left(d_{1}, d_{2}\right)$ and $i \in$ [2], a vertex v with $f(v)=i$ is i-saturated if v is adjacent to d_{i} neighbors colored i. By definition, an i-saturated vertex has at least d_{i} neighbors.

Lemma 2.1. Let $H=H\left(d_{1}, d_{2}\right)$ where $d_{1} \leq d_{2}$. If v is a 2 -vertex of H, then v is adjacent to two $\left(d_{1}+2\right)^{+}$-vertices, one of which is a $\left(d_{2}+2\right)^{+}$-vertex.
Proof. Let $N(v)=\left\{v_{1}, v_{2}\right\}$ and let f be a coloring of $H-v$ obtained by the minimality of H. If $f\left(v_{1}\right)=f\left(v_{2}\right)$, then letting $f(v)$ $\in[2] \backslash\left\{f\left(v_{1}\right)\right\}$ gives a coloring of H, which is a contradiction. Without loss of generality, assume that $f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=2$. Since setting $f(v)=1$ must not give a coloring of H, we know v_{1} is 1 -saturated. Since setting $f\left(v_{1}\right)=2$ and $f(v)=1$ must not give a coloring of H, we know v_{1} has a neighbor colored 2 . This implies $d\left(v_{1}\right) \geq d_{1}+2$. Similar logic implies that $d\left(v_{2}\right) \geq d_{2}+2$.

Lemma 2.2. Let $H=H\left(d_{1}, d_{2}\right)$ where $2 \leq d_{1} \leq d_{2}$. If v is a 3-vertex of H, then v is adjacent to at least two $\left(d_{1}+2\right)^{+}$-vertices, one of which is $a\left(d_{2}+2\right)^{+}$-vertex.
Proof. Let $N(v)=\left\{v_{0}, v_{1}, v_{2}\right\}$ and let f be a coloring of $H-v$ obtained by the minimality of H. If $f\left(v_{0}\right)=f\left(v_{1}\right)=f\left(v_{2}\right)$, then letting $f(v) \in[2] \backslash\left\{f\left(v_{0}\right)\right\}$ gives a coloring of H, which is a contradiction. Without loss of generality, assume that $f\left(v_{1}\right)$ $=1$ and $f\left(v_{2}\right)=2$. Further assume that $f\left(v_{0}\right)=i$ for some $i \in[2]$ and let $j \in[2] \backslash\{i\}$.

Since setting $f(v)=j$ must not give a coloring of H, we know that v_{j} is j-saturated. Since setting $f(v)=j$ and $f\left(v_{j}\right)=i$ must not give a coloring of H, we know that v_{j} has a neighbor colored i. This implies $d\left(v_{j}\right) \geq d_{j}+2$. Since setting $f(v)=i$ must not give a coloring of H, we know either v_{0} or v_{i} is i-saturated. If both $d\left(v_{0}\right), d\left(v_{i}\right) \leq d_{i}+1$, then recolor each i-saturated vertex in $\left\{v_{0}, v_{i}\right\}$ with color j, and $\operatorname{set} f(v)=i$ to obtain a coloring of H, which is a contradiction. Therefore either v_{0} or v_{i} has degree at least $d_{i}+2$.

Lemma 2.3. Let $H=H\left(d_{1}, d_{2}\right)$ where $d_{1}+1 \leq d_{2}$. If v is $a\left(d_{1}+d_{2}+1\right)^{-}$-vertex of H, then v is adjacent to at least one $\left(d_{1}+2\right)^{+}$-vertex.
Proof. Suppose that no neighbor of v is a $\left(d_{1}+2\right)^{+}$-vertex and let f be a coloring of $H-v$ obtained by the minimality of H. Both colors 1 and 2 must appear on $N(v)$; otherwise, we can easily obtain a coloring of H, which is a contradiction. Since setting $f(v)=2$ must not give a coloring of H and v cannot be adjacent to a 2-saturated vertex (since a 2 -saturated neighbor of v has degree at least $d_{2}+1 \geq d_{1}+2$), we know that v has at least $d_{2}+1$ neighbors colored 2 . Since setting $f(v)=1$ must not give a coloring of H, we know that either v has at least $d_{1}+1$ neighbors colored 1 or v has a 1 -saturated neighbor. The former case is impossible because $d(v) \leq d_{1}+d_{2}+1$. Since each neighbor of v is a $\left(d_{1}+1\right)^{-}$-vertex, each 1 -saturated neighbor of v can be recolored with 2 . Now we can let $f(v)=1$ to obtain a coloring of H, which is a contradiction.

Lemma 2.4. Let $H=H\left(d_{1}, d_{2}\right)$ and let v be a 2 -vertex of H where $N(v)=\left\{v_{1}, v_{2}\right\}$ and $d\left(v_{1}\right) \leq d_{2}+1$. If f is a coloring of $H-v$, then $f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=2$.
Proof. If $f\left(v_{1}\right)=f\left(v_{2}\right)$, then letting $f(v) \in[2] \backslash\left\{f\left(v_{1}\right)\right\}$ gives a coloring of H, which is a contradiction. If $f\left(v_{1}\right)=2$ and $f\left(v_{2}\right)=1$, then let $f(v)=2$ to obtain a coloring of H, unless v_{1} is 2-saturated. This implies that $d\left(v_{1}\right)=d_{2}+1$ and $f(z)=2$ for $z \in N\left(v_{1}\right) \backslash\{v\}$, so we can let $f\left(v_{1}\right)=1$ to obtain a coloring of H, which is a contradiction.

https://daneshyari.com/en/article/4647319

Download Persian Version:

https://daneshyari.com/article/4647319

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ilkyoo@kaist.ac.kr (I. Choi), raspaud@labri.fr (A. Raspaud).

