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a b s t r a c t

A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr
where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}.
Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus
on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4
that are not (d1, d2)-colorable. It is known that graphs inG5 are (2, 6)-colorable and (4, 4)-
colorable, but not all of them are (3, 1)-colorable. We prove that graphs in G5 are (3, 5)-
colorable, leaving two interesting questions open: (1) are graphs inG5 also (3, d2)-colorable
for some d2 ∈ {2, 3, 4}? (2) are graphs in G5 indeed (d1, d2)-colorable for all d1 + d2 ≥ 8
where d2 ≥ d1 ≥ 1?

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let [n] = {1, . . . , n}. Only finite, simple graphs are considered. Given a graph G, let V (G) and E(G) denote the vertex set
and edge set of G, respectively. A neighbor of a vertex v is a vertex adjacent to v, and let N(v) denote the set of neighbors
of v. The degree of v, denoted by d(v), is |N(v)|. The degree of a face f , denoted by d(f ), is the length of a shortest boundary
walk of f . A k-vertex, k+-vertex, and k−-vertex are vertices of degree k, at least k, and at most k, respectively. A k-face, k+-face
is a face of degree k, at least k, respectively. The girth of a graph is the length of a shortest cycle.

A graph is (d1, . . . , dr)-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where the maximum degree of
the graph induced by Vi is at most di for each i ∈ [r]; in other words, there exists a function f : V (G) → [r] where the graph
induced by vertices of color i has maximum degree at most di for i ∈ [r].

There aremany papers that study (d1, . . . , dr)-colorings of sparse graphs resulting in corollaries regarding planar graphs,
sometimes with restrictions on the length of a smallest cycle. The well-known four color theorem [1,2] is exactly the
statement that planar graphs are (0, 0, 0, 0)-colorable. Cowen, Cowen, and Woodall [7] proved that planar graphs are
(2, 2, 2)-colorable, and Eaton and Hull [8] and Škrekovski [11] proved that this is sharp by exhibiting non-(1, k, k)-colorable
planar graphs for each k. Thus, the problem is completely solved when r ≥ 3.

LetGg denote the class of planar graphswith girth at least g . Given any d1 and d2, consider the following graph constructed
by Montassier and Ochem [10]. Let Xi(d1, d2) be a copy of K2,d1+d2+1 where one part is {xi, yi}. Obtain Y (d1, d2) in the
followingway: startwithX1(d1, d2), . . . , Xd1+2(d1, d2) and identify x1, . . . , xd1+2 into x, and add the edges y1y2, . . . , y1yd1+2.
It is easy to verify that Y (d1, d2) is in G4 but it is not (d1, d2)-colorable.

Therefore, we focus on graphs in G5. There are also many papers [3,5,9,6,4,10] that investigate (d1, d2)-colorability for
graphs in Gg for g ≥ 6; see [10] for the rich history. For example, Borodin, Ivanova, Montassier, Ochem, and Raspaud [3]
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constructed a graph inG6 (and thus also inG5) that is not (0, k)-colorable for any k. The question of determining if there exists
a finite k where all graphs in G5 are (1, k)-colorable is not yet known and was explicitly asked in [10]. On the other hand,
Borodin and Kostochka [5] and Havet and Sereni [9], respectively, proved results that imply graphs inG5 are (2, 6)-colorable
and (4, 4)-colorable.

In this paper, we prove the following theorem, which is not implied by the aforementioned results.

Theorem 1.1. Planar graphs with girth at least 5 are (3, 5)-colorable.

This solves one of the previously unknown cases of the following question.

Question 1.2. Are planar graphs with girth at least 5 indeed (d1, d2)-colorable for all d1 + d2 ≥ 8 where d2 ≥ d1 ≥ 1?

The only remaining case of Question 1.2 is when d1 = 1 and d2 = 7. As mentioned before, interestingly enough, we do
not know even if there is a finite kwhere graphs in G5 are (1, k)-colorable.

Since there are non-(3, 1)-colorable graphs in G5 [10], Theorem 1.1 implies that the minimum dwhere graphs in G5 are
(3, d)-colorable is in {2, 3, 4, 5}; determining this d would be interesting.

In the figures throughout this paper, the white vertices do not have incident edges besides the ones drawn, and the black
vertices may have other incident edges.

In Section 2, we prove structural lemmas for non-(d1, d2)-colorable graphs with minimum order. In Section 3, we reveal
some more structures of minimum counterexamples to Theorem 1.1 by focusing on the case when d1 = 3 and d2 = 5.
Finally, we prove Theorem 1.1 by using a discharging procedure in Section 4.

2. Non-(d1, d2)-colorable graphs with minimum order

In this section, we prove structural lemmas regarding non-(d1, d2)-colorable graphs with minimum order; let H(d1, d2)
be such a graph. It is easy to see that the minimum degree of (a vertex of) H(d1, d2) is at least 2 and H(d1, d2) is connected.

Given a (partial) coloring f of H(d1, d2) and i ∈ [2], a vertex v with f (v) = i is i-saturated if v is adjacent to di neighbors
colored i. By definition, an i-saturated vertex has at least di neighbors.

Lemma 2.1. Let H = H(d1, d2)where d1 ≤ d2. If v is a 2-vertex of H, then v is adjacent to two (d1 +2)+-vertices, one of which
is a (d2 + 2)+-vertex.
Proof. LetN(v) = {v1, v2} and let f be a coloring ofH−v obtained by theminimality ofH . If f (v1) = f (v2), then letting f (v)
∈ [2]\{f (v1)} gives a coloring ofH , which is a contradiction.Without loss of generality, assume that f (v1) = 1 and f (v2) = 2.
Since setting f (v) = 1 must not give a coloring of H , we know v1 is 1-saturated. Since setting f (v1) = 2 and f (v) = 1 must
not give a coloring of H , we know v1 has a neighbor colored 2. This implies d(v1) ≥ d1 + 2. Similar logic implies that
d(v2) ≥ d2 + 2. �

Lemma 2.2. Let H = H(d1, d2) where 2 ≤ d1 ≤ d2. If v is a 3-vertex of H, then v is adjacent to at least two (d1 + 2)+-vertices,
one of which is a (d2 + 2)+-vertex.
Proof. Let N(v) = {v0, v1, v2} and let f be a coloring of H − v obtained by the minimality of H . If f (v0) = f (v1) = f (v2),
then letting f (v) ∈ [2] \ {f (v0)} gives a coloring of H , which is a contradiction. Without loss of generality, assume that f (v1)
= 1 and f (v2) = 2. Further assume that f (v0) = i for some i ∈ [2] and let j ∈ [2] \ {i}.

Since setting f (v) = j must not give a coloring of H , we know that vj is j-saturated. Since setting f (v) = j and f (vj) = i
must not give a coloring of H , we know that vj has a neighbor colored i. This implies d(vj) ≥ dj + 2. Since setting f (v) = i
must not give a coloring ofH , we know either v0 or vi is i-saturated. If both d(v0), d(vi) ≤ di+1, then recolor each i-saturated
vertex in {v0, vi} with color j, and set f (v) = i to obtain a coloring of H , which is a contradiction. Therefore either v0 or vi
has degree at least di + 2. �

Lemma 2.3. Let H = H(d1, d2) where d1 + 1 ≤ d2. If v is a (d1 + d2 + 1)−-vertex of H, then v is adjacent to at least one
(d1 + 2)+-vertex.
Proof. Suppose that no neighbor of v is a (d1 + 2)+-vertex and let f be a coloring of H − v obtained by the minimality of H .
Both colors 1 and 2 must appear on N(v); otherwise, we can easily obtain a coloring of H , which is a contradiction. Since
setting f (v) = 2must not give a coloring ofH and v cannot be adjacent to a 2-saturated vertex (since a 2-saturated neighbor
of v has degree at least d2 + 1 ≥ d1 + 2), we know that v has at least d2 + 1 neighbors colored 2. Since setting f (v) = 1
must not give a coloring of H , we know that either v has at least d1 + 1 neighbors colored 1 or v has a 1-saturated neighbor.
The former case is impossible because d(v) ≤ d1 + d2 + 1. Since each neighbor of v is a (d1 + 1)−-vertex, each 1-saturated
neighbor of v can be recolored with 2. Now we can let f (v) = 1 to obtain a coloring of H , which is a contradiction. �

Lemma 2.4. Let H = H(d1, d2) and let v be a 2-vertex of H where N(v) = {v1, v2} and d(v1) ≤ d2 + 1. If f is a coloring of
H − v, then f (v1) = 1 and f (v2) = 2.
Proof. If f (v1) = f (v2), then letting f (v) ∈ [2] \ {f (v1)} gives a coloring of H , which is a contradiction. If f (v1) = 2 and
f (v2) = 1, then let f (v) = 2 to obtain a coloring ofH , unless v1 is 2-saturated. This implies that d(v1) = d2 +1 and f (z) = 2
for z ∈ N(v1) \ {v}, so we can let f (v1) = 1 to obtain a coloring of H , which is a contradiction. �
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