Blocking sets of Hermitian generalized quadrangles

Antonio Cossidente, Francesco Pavese*
Dipartimento di Matematica Informatica ed Economia, Università della Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy

ARTICLE INFO

Article history:
Received 24 January 2014
Received in revised form 24 June 2014
Accepted 23 August 2014
Available online 16 September 2014

Keywords:

Hermitian generalized quadrangle
Blocking set
Tight set
Cyclic spread
Unital

Abstract

Some infinite families of minimal blocking sets on Hermitian generalized quadrangles are constructed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A finite classical polar space \mathcal{P} of rank $r \geq 2$ arises from the set of all absolute points and totally isotropic (totally singular) subspaces of a polarity of a projective space $P G(n, q)$. The integer r denotes the vector dimension of a maximal totally isotropic (totally singular) subspace of \mathcal{P}, [2]. When $r=2$ the polar space \mathcal{P} is called a classical generalized quadrangle [11]. Examples of classical generalized quadrangles arise from the Hermitian surface $\mathscr{H}\left(3, q^{2}\right)$ of $\operatorname{PG}\left(3, q^{2}\right)$ and the Hermitian variety $\mathscr{H}\left(4, q^{2}\right)$ of $P G\left(4, q^{2}\right)$. The generalized quadrangle $\mathscr{H}\left(3, q^{2}\right)$ has order $\left(q^{2}, q\right)$: any line contains $q^{2}+1$ points and on any point there are $q+1$ lines. The generalized quadrangle $\mathscr{H}\left(4, q^{2}\right)$ has order $\left(q^{2}, q^{3}\right)$: any line contains $q^{2}+1$ points and on any point there are $q^{3}+1$ lines. An ovoid O of \mathscr{P} is a point set of \mathscr{P} which has exactly one point in common with every totally isotropic subspace of rank r.

A blocking set of \mathcal{P} with respect to the set B of totally isotropic (totally singular) k-dimensional subspaces is a set of points of \mathcal{P} that meets every k-dimensional subspace of B; a blocking set is minimal if the removal of any point leads to a non-blocking set (thus each point is essential). Of course, any ovoid of \mathcal{P} is a trivial minimal blocking set of \mathcal{P}.

In this paper we are interested in blocking sets of the generalized quadrangles $\mathscr{H}\left(3, q^{2}\right)$ and $\mathscr{H}\left(4, q^{2}\right)$ with respect to generators, i.e., lines. We will construct several families of minimal blocking sets that are non-linear in the sense that they do not lie in a subspace of $P G\left(3, q^{2}\right)$ of dimension 2 and of $P G\left(4, q^{2}\right)$ of dimension 3 , respectively.

There are plenty of examples of ovoids of $\mathscr{H}\left(3, q^{2}\right)$ [5]. The generalized quadrangle $\mathscr{H}\left(4, q^{2}\right)$ has no ovoids [13]. The size of an ovoid of $\mathscr{H}\left(3, q^{2}\right)\left(\mathscr{H}\left(4, q^{2}\right)\right)$ would be $q^{3}+1$ (resp. $\left.q^{5}+1\right)$ and this provides a lower bound for the size of a minimal blocking set. We are not aware of any upper bound for the size of a minimal blocking set besides the trivial one obtained by counting the number of generators.

Metsch conjectures that the smallest minimal blocking sets with respect to k-dimensional subspaces of Hermitian polar spaces $\mathscr{H}\left(n, q^{2}\right)$ are linear (i.e., they lie in a subspace of $\mathscr{H}\left(n, q^{2}\right)$ of dimension $\left.n-k\right)$. In [10] he proves the conjecture (with a minor caveat) when $k \leq(n-3) / 2$, and (with De Beule) in [8] he proves the conjecture (with a minor caveat) when n

[^0]is even and $k<(n-1) / 2$. For $k=(n-1) / 2$ the conjecture remains unproven. Nevertheless linear blocking sets remain examples of small minimal blocking sets with sizes ranging from $\left(q^{(n+3) / 2}-(-1)^{(n+3) / 2}\right)\left(q^{(n+1) / 2}-(-1)^{(n+1) / 2}\right) /\left(q^{2}-1\right)$ to $q^{n-1}(q+1)$.

Blocking sets of Hermitian generalized quadrangles that are not ovoids appear rare. The following examples of minimal blocking sets of $\mathscr{H}\left(3, q^{2}\right)$ are known.
(a) Any ovoid.
(b) The set of points of $\mathscr{H}\left(3, q^{2}\right)$ in a tangent plane at an arbitrary point p of $\mathscr{H}\left(3, q^{2}\right)$, with the point p deleted, is a linear blocking set \mathcal{B} of $\mathscr{H}\left(3, q^{2}\right)$ of size $q^{3}+q^{2}$ [10].
(c) Let \mathcal{U} be a Hermitian curve embedded in $\mathscr{H}\left(3, q^{2}\right)$ as a non-singular section with a plane π. Let $p \in \mathcal{U}$ and consider the q^{2} non-tangent lines through p lying on π. Such lines, let us call them $L_{1}, \ldots, L_{q^{2}}$, are all secant to $\mathscr{H}\left(3, q^{2}\right)$. Consider r different lines $L_{i}, 1 \leq r \leq q^{2}$ and let $H_{i}=L_{i} \cap \mathscr{H}\left(3, q^{2}\right)$. The set $\mathcal{B}:=\mathcal{U} \backslash\left(\bigcup_{i=1}^{r} H_{i}\right) \bigcup_{i=1}^{r} H_{i}^{\perp} \cap \mathscr{H}\left(3, q^{2}\right)$, where \perp is the polarity induced by the Hermitian surface, is a minimal blocking set of $\mathscr{H}\left(3, q^{2}\right)$ of size $q^{3}+r$ [3].
(d) An infinite family for q odd, of size $q^{3}+q^{2}$ admitting $\operatorname{PSL}(2, q)$ as an automorphism group [4].
(e) An infinite family for $q>2$ even of size $(q+1)^{3}$, [6].

No other instances of small minimal blocking sets in $\mathscr{H}\left(3, q^{2}\right)$ are known apart from some computational examples and the examples in [3].

As far as we know no examples of non-linear minimal blocking sets of $\mathscr{H}\left(4, q^{2}\right)$ have been constructed so far.

2. Blocking sets of $\mathscr{H}\left(3, q^{2}\right)$

The symplectic group $\operatorname{PSp}(4, q)$ is embedded in $\mathrm{P} \Gamma \mathrm{U}\left(4, q^{2}\right)$ as a subfield subgroup, stabilizing a subquadrangle of $\mathscr{H}\left(3, q^{2}\right)$ isomorphic to $\mathcal{W}(3, q)$. In terms of coordinates, assuming that $\mathscr{H}\left(3, q^{2}\right)$ has equation $X_{1}^{q+1}+X_{2}^{q+1}+X_{3}^{q+1}+X_{4}^{q+1}=0$, where X_{1}, \ldots, X_{4} are homogeneous projective coordinates in $\operatorname{PG}\left(3, q^{2}\right)$, the set $\left\{\left(x, \rho x^{q}, y, \rho y^{q}\right): x, y \in \operatorname{GF}\left(q^{2}\right)\right\}$ with $\rho^{q+1}=$ -1 , is the point set of a symplectic Baer subgeometry $\mathcal{W}(3, q)$ embedded in $\mathscr{H}\left(3, q^{2}\right)$ [12]. Every generator of $\mathscr{H}\left(3, q^{2}\right)$ either meets $\mathcal{W}(3, q)$ in a totally isotropic line of $\mathcal{W}(3, q)$ or it is disjoint from it. This means that a point of $\mathscr{H}\left(3, q^{2}\right) \backslash \mathcal{W}(3, q)$ lies on a unique totally isotropic line of $\mathcal{W}(3, q)$. Under the Klein correspondence κ between lines of $P G\left(3, q^{2}\right)$ and points of a Klein quadric $\mathcal{Q}^{+}\left(5, q^{2}\right)$ of $\operatorname{PG}\left(5, q^{2}\right)$, it turns out that $\mathscr{H}\left(3, q^{2}\right)$ corresponds to an elliptic quadric $\mathcal{Q}^{-}(5, q) \subset \mathcal{Q}^{+}\left(5, q^{2}\right)$ embedded in a Baer subgeometry $\operatorname{PG}(5, q)$ of $\operatorname{PG}\left(5, q^{2}\right)$ and that the symplectic subgeometry $\mathcal{W}(3, q)$ embedded in $\mathscr{H}\left(3, q^{2}\right)$ corresponds to a parabolic section $Q(4, q)$ of $Q^{-}(5, q)$. Thus the intersection of two symplectic subgeometries corresponds to the intersection of two such parabolic sections, which is a solid section. A solid meeting $\mathbb{Q}^{-}(5, q)$ in a hyperbolic quadric $Q^{+}(3, q)$ contains $2(q+1)$ lines of the quadric. In this case, each regulus of the hyperbolic quadric corresponds to a hyperbolic line, and as the reguli are opposite, the two symplectic subgeometries intersects in a pair of hyperbolic lines, which are pairwise polar. It follows that the two symplectic subgeometries share $2(q+1)$ points forming a hyperbolic pair $\left\{\ell_{1}, \ell_{2}\right\}$. Also, there are exactly $q+1$ symplectic subgeometries embedded in $\mathscr{H}\left(3, q^{2}\right)$ sharing a hyperbolic pair and there exists a cyclic collineation group G of order $q+1$ in $P \Gamma U\left(4, q^{2}\right)$ permuting such symplectic subgeometries: in the dual setting G induces a Singer cycle of $\operatorname{PGL}(2, q)$ acting on $Q^{+}(3, q)^{\perp}$, where \perp is the non-degenerate orthogonal polarity induced by $Q^{-}(5, q)$.

Theorem 2.1. Let $\Sigma_{i}, i=1, \ldots, q+1$, be the symplectic subgeometries embedded in $\mathscr{H}\left(3, q^{2}\right)$ sharing a hyperbolic pair ℓ_{1}, ℓ_{2}. Let \mathcal{X} be a minimal blocking set of Σ_{i} for some $i=1, \ldots, q+1$, of size k, such that $\left|\mathcal{X} \cap \ell_{1}\right|=k_{1}$ and $\left|\mathcal{X} \cap \ell_{2}\right|=k_{2}$. Assume that the generators of $\mathscr{H}\left(3, q^{2}\right)$ meeting both ℓ_{1} and ℓ_{2} are not tangent to \mathcal{X} at points of $\ell_{1} \cup \ell_{2}$. Then $\left(\mathcal{X} \backslash\left(\ell_{1} \cup \ell_{2}\right)\right)^{G}$ is a minimal blocking set of $\mathscr{H}\left(3, q^{2}\right)$ of size $\left(k-k_{1}-k_{2}\right)(q+1)$.
Proof. Let g be a generator of $\mathscr{H}\left(3, q^{2}\right)$ that does not meet both ℓ_{1} and ℓ_{2}. Assume that g intersects Σ_{i} at $q+1$ points (a totally isotropic line, say r, of Σ_{i}). Then g is disjoint from $\Sigma_{j}, j \neq i$. Indeed, in the dual setting, r is a point, say P_{r}, of $Q^{-}(5, q)$ on the parabolic quadric through $Q^{+}(3, q)$ representing Σ_{i}. If r met $\Sigma_{j}, j \neq i$, at $q+1$ points, then P_{r} would also lie on the parabolic quadric representing Σ_{j}. It follows that P_{r} should lie on $Q^{+}(3, q)$, a contradiction. Also, notice that the $q+1$ parabolic quadrics on $\mathcal{Q}^{+}(3, q)$ cover all points of $\mathcal{Q}^{-}(5, q)$. Let \mathcal{X} be a minimal blocking set of Σ_{i}, for some $i=1, \ldots, q+1$, of size k, such that $\left|X \cap \ell_{1}\right|=k_{1}$ and $\left|X \cap \ell_{2}\right|=k_{2}$. It follows that $\left(\mathcal{X} \backslash\left(\ell_{1} \cup \ell_{2}\right)\right)^{G}$ is a minimal blocking set of $\mathscr{H}\left(3, q^{2}\right)$ of the desired size.

Remark 2.2. Some examples:

1. Let π be any plane of Σ_{i}. Then, either π intersects ℓ_{1} and ℓ_{2} in one point or π contains ℓ_{i} and meets ℓ_{j} in one point, $i \neq j$. In the first case we get a minimal blocking set of size $q^{3}+2 q^{2}-1$. In the second case we get a minimal blocking set of size $q^{3}+q^{2}-q-1$.
2. Assume that q is even and let \mathcal{O} be any ovoid of Σ_{i}. Assume that ℓ_{1} is secant to \mathcal{O}. We get a minimal blocking set of size $q^{3}+q^{2}-q-1$.
3. Assume that q is even and let Q be a hyperbolic quadric of Σ_{i} such that the associated polarity is the symplectic polarity of Σ_{i}. We get either a minimal blocking set of size $q^{3}+3 q^{2}+3 q+1$ (when $k_{1}=k_{2}=0$) or a minimal blocking set of size $q^{3}+3 q^{2}-q-3$ (when $k_{1}=k_{2}=2$).

https://daneshyari.com/en/article/4647324

Download Persian Version:
https://daneshyari.com/article/4647324

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: antonio.cossidente@unibas.it (A. Cossidente), francesco.pavese@unibas.it (F. Pavese).

