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a b s t r a c t

Let us fix a function f (n) = o(n ln n) and real numbers 0 ≤ α < β ≤ 1. We present a
polynomial time algorithm which, given a directed graph G with n vertices, decides either
that one can add at most βn new edges to G so that G acquires a Hamiltonian circuit or that
one cannot add αn or fewer new edges to G so that G acquires at least e−f (n)n! Hamiltonian
circuits, or both.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and main results

Let G = (V , E) be a directed graph with set V of vertices and set E of edges. A Hamiltonian circuit is a closed walk i1 →

i2 → · · · → in → i1 that visits every vertex of G exactly once. It is a classical NP-complete problem to determine whether
a given directed graph contains a Hamiltonian circuit (in which case the graph is called Hamiltonian). In what follows, n
denotes the number of vertices of the graph, n = |V |.

The following version of the problem is also known to be NP-complete: Given 0 < β < 1, is it true that one can add at
most βn new edges to a given directed graph with n vertices so that the graph becomes Hamiltonian? In fact, for any fixed
β < 1/320, the problem is NP-complete; see [9,4].

Anastasios Sidiropoulos pointed out to the author that testing Hamiltonicity does not become any easier if we are
promised that should the directed graph be Hamiltonian, it contains at least exp {−nϵ} n! Hamiltonian circuits for some
fixed ϵ > 0. Indeed, let G be a given directed graph with m vertices. Let us choose k > 2/ϵ and construct a new directed
graphG by attaching a complete directed graph with mk vertices by two edges to two selected vertices u and v of G. Hence
the new graphG with n = m + mk vertices contains at least (mk

− 2)! Hamiltonian circuits if and only if G contains a
Hamiltonian path with endpoints u and v. If there is no such path in G thenG contains no Hamiltonian circuits.

Let us choose a function f (n) = o(n ln n) and fix two numbers 0 ≤ α < β ≤ 1. We present a polynomial time algorithm,
which, given a directed graph G with n vertices, outputs at least one of the following two statements (a) and (b):

(a) one can add at most βn new edges to G so that G acquires a Hamiltonian circuit;
(b) one cannot add αn or fewer new edges to G so that G acquires at least e−f (n)n! Hamiltonian circuits.

For example, confronted with two directed graphs on n vertices one of which contains at least 10−3nn! Hamiltonian cir-
cuits and the other does not become Hamiltonian unless more than 10−3n new edges added to the graph, our algorithmwill
be able to tell which graph is which in polynomial time. On the other hand, testing whether one needs to add at least 10−3n
new edges to a given directed graph on n vertices so that the graph becomes Hamiltonian is an NP-hard problem and testing
whether a given directed graph on n vertices contains at least 10−3nn! Hamiltonian circuits is also an NP-hard problem.
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It may happen though that while the statements (a) and (b) above are both true, the algorithm outputs only one of them.
We note that even if we are told that the graph contains at least e−f (n)n! Hamiltonian circuits, it is not obvious how

to construct any of the circuits efficiently (deterministically or probabilistically). We also note some vague similarity with
property testing questions [5].

Our algorithm is based on computing permanents and their Hamiltonian versions.

1.1. Permanents and Hamiltonian permanents

Let A =

aij

be an n × n real matrix. The permanent of A is defined as

per A =


σ∈Sn

n
i=1

aiσ(i),

where the sum is taken over the symmetric group Sn of permutations of the set {1, . . . , n}. As is known, the problem of
computing the permanent exactly is #P-hard, even if the entries of A are restricted to be 0 and 1 [11]. For non-negative
matrices a fully polynomial randomized approximation scheme is available [6]. We, however, are interested in computing
permanents of a rather restricted class of matrices. Namely, let us suppose that

1
n0.1

≤ aij ≤ 1 for all i, j. (1)

Then a version of the scaling algorithm of [8], see also [3], approximates per A in polynomial in n time within an
O

exp


n0.35


factor. The algorithm is deterministic and easy to implement. We review the algorithm in Section 3.

Let Hn ⊂ Sn be the subset of (n − 1)! permutations consisting of a single cycle. We define the Hamiltonian permanent by

ham A =


σ∈Hn

n
i=1

aiσ(i).

If A is a 0–1 matrix then it is an NP-complete problem to tell ham A from 0, as the problem is equivalent to testing
Hamiltonicity of the directed graph with adjacency matrix A. It turns out, however, that when (1) holds, per A and ham A
have the same logarithmic order.

Theorem 1. Let A =

aij

be an n × n matrix such that

ϵ ≤ aij ≤ 1

for some ϵ > 0 and all i, j. Let

r =


4 ln n
ϵ2


+ 6.

Then
1
2r

ϵ

n

r
per A ≤ ham A ≤ per A.

In particular, if we choose ϵ = n−0.1 then per A approximates ham A within an O

exp


n0.3


factor.

We prove Theorem 1 in Section 2.
In a different setting, the relation between the permanent and Hamiltonian permanent of the adjacency matrix of a k-

regular graphwas used in [12]while the first use of permanents to bound the number of Hamiltonian circuits in tournaments
goes back to [1].

1.2. Testing Hamiltonicity of graphs

Let us fix a function f (n) = o(n ln n) and real numbers 0 ≤ α < β ≤ 1. Given a directed graph G = (V , E), we identify
V = {1, . . . , n} and construct an n × nmatrix A = A(G), A =


aij

, as follows:

aij =


1 if (i → j) ∈ E
n−0.1 otherwise.

Using Theorem 1 and the algorithm of Section 3, we compute ham A within a factor of O

exp


n0.4


. If G does not become

Hamiltonian unless more than βn new edges are added to G, then

ham A ≤ n−0.1βnn! (2)

If, however, one can add αn or fewer edges to G so that G acquires at least e−f (n)n! Hamiltonian circuits then

ham A ≥ n−0.1αne−f (n)n! (3)
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