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a b s t r a c t

In this paper, we study the connected subgraph polytope which is the convex hull of the
solutions to a related combinatorial optimization problem called the maximum weight
connected subgraph problem.We strengthen a cut-based formulation by considering some
new partition inequalities for whichwe give necessary and sufficient conditions to be facet
defining. Based on the separation problem associated with these inequalities, we give a
complete polyhedral characterization of the connected subgraph polytope on cycles and
trees.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph Gwith vertex set V and edge set E, a subgraph H of G is connected if for any two vertices of H ,
there exists a path connecting them [18]. This paper deals with the connected subgraph polytope, that is, the convex hull
of the incidence vectors of edge sets inducing connected subgraphs of G. Given an undirected graph G and a real-valued
edge-weight vector, the Maximum Weight Connected Subgraph Problem, hereafter denoted MWCSP, consists of finding a
maximum-weight subset of edges which induces a connected subgraph of G.

MWCSP was first considered by Kerivin and Ng [15] who focused on its complexity. They showed that it is a NP-hard
combinatorial optimization problem even on planar or bipartite graphs by reducing the Steiner Tree problem to MWCSP.
Kerivin andNg [15] also proved that theMWCSP and the prize-collecting Steiner tree problemas defined in Johnson et al. [14]
and in Goemans and Williamson [10], are equivalent optimization problems. Using a similar approach as Feigenbaum
et al. [8], they showed that it is NP-hard to approximate MWCSP to within a constant factor. What makes MWCSP look
like a non-trivial optimization problem on classes of graphs where the Steiner Tree problem is trivial is the fact that MWCSP
deals with both positive and negative weights on the edges.

The main reasons for studying the connected subgraph polytope are that Kerivin and Ng [15] showed that its related
optimization problem, MWCSP, is solvable in polynomial time on certain classes of graphs such as trees, cycles, and fans.
Consequently, it is of interest to know if there areways to describe or generate facet-inducing inequalities to the polyhedron
that describes all the feasible solutions to MWCSP on these classes of graphs.

This article is organized as follows. In Section 2, we present the Connected Subgraph Polytope, denoted CSP(G), which
corresponds to the convex hull of the incidence vectors of connected subgraphs of G. We then give a formulation for CSP(G),
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and necessary and sufficient conditions for the facet-defining inequalities. We conclude Section 2 by giving a complete
polyhedral characterization of CSP(G) on graphs having no matching of cardinality three. Section 3 introduces new valid
inequalities, called the matching-partition inequalities, and gives necessary and sufficient conditions for these inequalities
to be facet defining. In Section 4, we investigate the separation problems for all the discussed families of inequalities. In
Section 5, we give a complete polyhedral characterization of CSP(G) on cycles and trees. Finally, some concluding remarks
are given in Section 6.

We conclude this introduction with some definitions and notation, which have been mainly taken from [7,18].
Let G be a simple, connected, and undirected graph with vertex set V (G) and edge set E(G); when there is no confusion

on which graph we are describing, we will label the graph as G = (V , E). The order n of G is its number of vertices, that
is, n = |V |. The number of edges of G is denoted by m. If e ∈ E is an edge with extremities u and v, we also write uv to
denote e.

A path, cycle, and complete graph of order n are denoted Pn, Cn, and Kn, respectively. If n ≥ 3, a star or claw is the complete
bipartite graph K1,n, that is, the graph having one vertex being adjacent to the other n vertices. The line graph L(G) of G is the
graph on E wherein e, f ∈ E are adjacent as vertices in L(G) if and only if they are adjacent as edges in G.

Let U be a subset of V . The set of edges having one extremity in U and the other one in U = V \ U is called a cut and
is denoted by δ(U). If U = {v} for some v ∈ V , then we write δ(v) for δ({v}). We denote by E[U] the set of edges having
both extremities in U and G[U] the subgraph induced by U (i.e., G[U] = (U, E[U])). GivenW ⊂ V withW ∩ U = ∅, [U,W ]
denotes the set of edges having one extremity in U and the other one in W . If π = {V1, . . . , Vp}, p ≥ 2, is a partition of V ,
then we denote by E(π) the set of edges having their extremities in different classes of π . We may also write δ(V1, . . . , Vp)
for E(π).

Let F ⊆ E. Given x ∈ RE, x(F) will denote


e∈F x(e).

2. The connected subgraph polytope and preliminaries

Given any edge set F ⊆ E, its incidence vector is the vector xF in {0, 1}E such that xFe = 1 if and only if e ∈ F . The connected
subgraph polytope is the convex hull of the incidence vectors of edge sets inducing connected subgraphs of G, that is,

CSP(G) = conv{xF ∈ {0, 1}E : G[F ] is connected}.

We first get rid of the trivial cases associated with n = 2 (i.e., G = P2). In fact, CSP(P2) = P(P2) = [0, 1]. Consequently,
henceforth and unless otherwise mentioned, we suppose that G is of order at least 3.

The incidence vector of a connected subgraph of Gmust satisfy the following connectivity inequalities

x(δ(W )) ≥ xl + xr − 1 for all (W , l, r) ∈ C(G), (1)

where

C(G) = {(W , l, r) : ∅ ≠ W ⊂ V , l ∈ E[W ], and r ∈ E[W ]}.

For F ⊆ E, if xF satisfies inequalities (1), then there exists at least a path in G[F ] connecting any pair of non-adjacent edges
l and r in F . Let P(G) be the set of vectors in RE which satisfy the connectivity inequalities (1) and the box inequalities

0 ≤ xe ≤ 1 for all e ∈ E. (2)

The next proposition immediately follows, and then is given with no proof.

Proposition 1. Polytope P(G) = {x ∈ RE
: x satisfies (1)–(2)} is a formulation for CSP(G), that is, CSP(G) = P(G) ∩ ZE .

Before studying the polyhedral structure of this polytope, we address the situation where the all-zero vector is excluded
fromCSP(G). In fact, according toDiestel [7], a connected subgraph cannot be the empty graph. To encompass this restriction,
we consider the polytope

CSP′(G) = conv{xF ∈ {0, 1}E : G[F ] is connected and |F | ≥ 1}

and the non-emptyness inequality

x(E) ≥ 1. (3)

Note that CSP′(G) ⊆ CSP(G). As stated in the next proposition, CSP(G) and CSP′(G) are full dimensional, and necessary and
sufficient conditions for inequalities (2) to be facet-defining of both polytopes are established. The proofs of these results
are omitted, since they use standard techniques. (See [6] for detailed proofs.)

Proposition 2. Let G = (V , E) be a simple, connected, and undirected graph of order at least 3.

(i) The polytopes CSP(G) and CSP ′(G) are full dimensional.
(ii) For any edge e ∈ E, the inequality xe ≤ 1 defines a facet of CSP(G) and CSP ′(G).
(iii) For any edge e ∈ E, the inequality xe ≥ 0 defines a facet of CSP(G).



Download English Version:

https://daneshyari.com/en/article/4647330

Download Persian Version:

https://daneshyari.com/article/4647330

Daneshyari.com

https://daneshyari.com/en/article/4647330
https://daneshyari.com/article/4647330
https://daneshyari.com

