Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note On large semi-linked graphs

Alexander Halperin^{[a,](#page-0-0)}*, Colton Magnant ^{[b](#page-0-2)}, Hua Wang ^b

^a *Department of Mathematics and Computer Science, Salisbury University, 1101 Camden Ave., Salisbury, MD 21804, United States* ^b *Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Ave., Room 3008, P.O. Box 8093, Statesboro, GA 30460, United States*

a r t i c l e i n f o

Article history: Received 28 September 2013 Received in revised form 26 August 2014 Accepted 27 August 2014 Available online 25 September 2014

Keywords: Graph linkedness Minimum degree

1. Introduction

a b s t r a c t

Let *H* be a multigraph, possibly with loops, and consider a set $S \subseteq V(H)$. A (simple) graph *G* is (*H*, *S*)-*semi-linked* if, for every injective map $f : S \rightarrow V(G)$, there exists an injective map $g: V(H) \ S \to V(G) \setminus f(S)$ and a set of $|E(H)|$ internally disjoint paths in *G* connecting pairs of vertices of *f*(*S*)∪*g*(*V*(*H*)*S*)for every edge between the corresponding vertices of *H*. This new concept of (*H*, *S*)-semi-linkedness is a generalization of *H*-*linkedness*. We establish a sharp minimum degree condition for a sufficiently large graph *G* to be (*H*, *S*)-semi-linked. © 2014 Elsevier B.V. All rights reserved.

For all basic definitions and notation, see [\[2\]](#page--1-0). Let *H* be a multigraph, possibly with loops unless stated otherwise. We use the notation $f : A \hookrightarrow B$ to denote an injective map f . A graph G is said to be *H*-linked if for every mapping $f : V(H) \hookrightarrow V(G)$, there is a mapping of the edges of *H* to paths of *G* that are vertex-disjoint except for the ends, which are the vertices $w \in G$ such that $f(v) = w$ for some $v \in H$. Such a mapping [\[14\]](#page--1-1) is called an *H*-subdivision (or *topological minor* [\[3\]](#page--1-2)) in *G*. For brevity, $|e$ t $|H| = |V(H)|$ and $e(H) = |E(H)|$.

The idea of *H*-linkedness was first introduced by Jung in [\[9\]](#page--1-3) and then developed in [\[8,](#page--1-4)[15\]](#page--1-5). Since then, there have been recent developments on the minimum degree criteria for a graph to be *H*-linked. Let *H* be a connected *loopless* multigraph. Kostochka and Yu determined in [\[11\]](#page--1-6) that a graph *G* of order $n \ge 5e(H) + 6$ with $\delta(G) \ge \frac{n + e(H) - 2}{2}$ is *H*-linked, and that the lower bound on δ(*G*)is sharp for bipartite *H*. Let *B*(*H*) be the number of edges in a maximum edge-cut of *H*. The same authors later proved in [\[12\]](#page--1-7) that if $\delta(H) \geq 2$, then a graph *G* of order $n \geq 7.5e(H)$ with $\delta(G) \geq \frac{n + B(H) - 2}{2}$ is *H*-linked, and that the lower bound on δ(*G*) is sharp. Now assume (for the rest of the paper) that *H may contain* loops. Ferrara, Gould, Tansey, and Whalen showed in [\[5\]](#page--1-8) that a sufficiently large graph *G* of order *n* satisfying the sharp condition $\delta(G) \geq \frac{n + B(H) - 2}{2}$ is *H*-linked. Note that the inclusion of loops in *H* comes at the expense of a linear (or any reasonable) lower bound on *n*, although this is not to say such a lower bound is best-possible. The results from [\[12](#page--1-7)[,5\]](#page--1-8) were united in [\[7\]](#page--1-9), and the sharp condition on δ(*G*) for *G* to be *H*-linked was generalized to include *disconnected* multigraphs *H*. Most importantly for our purposes, the term *b*(*H*) was defined in [\[4\]](#page--1-10) by Ferrara et al. as

$$
b(H) = \max_{\substack{R \cup N \cup U = V(H) \\ e(R, U) \ge 1}} \left\{ |N| + e(R, U) \right\}.
$$
 (1)

In [\[4\]](#page--1-10), Ferrara et al. generalized the main result of [\[7\]](#page--1-9) by proving a sharp condition involving $\sigma_2(G)$, the minimum degree sum (of nonadjacent vertices) of *G*, for *G* to be *H*-linked. Let *h*₀ denote the number of isolated vertices in *H*. Ferrara et al. showed

<http://dx.doi.org/10.1016/j.disc.2014.08.022> 0012-365X/© 2014 Elsevier B.V. All rights reserved.

Corresponding author. *E-mail addresses:* adhalperin@salisbury.edu (A. Halperin), cmagnant@georgiasouthern.edu (C. Magnant), hwang@georgiasouthern.edu (H. Wang).

Fig. 1. A multigraph *H* with *S* consisting of the three solid vertices.

that a graph *G* of order *n* with $\delta(G) \ge 4e(H) + h_0$ and $\sigma_2(G) \ge n + b(H) - 2$ is *H*-linked. Although the sharp examples for each of these minimum degree conditions all hinge on the connectivity of *G*, sharp connectivity criteria for *H*-linkedness remain unknown.

A special case of *H*-linkedness that is more directly related to connectivity is the concept of *k*-linkedness. A graph *G* is *k*-linked if for every choice of 2k distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, there exists a set of disjoint (s_i, t_i) -paths for all i. It was shown in [\[13\]](#page--1-11) that a graph *G* is *k*-linked if either *G* is 2*k*-connected and has at least 5*k*|*G*| edges or if *G* is 10*k*-connected, the latter being our [Theorem 2.](#page--1-12) The former result improved Theorem 1.3 in [\[10\]](#page--1-13), which states that a 2*k*-connected graph *G* is *k*-linked if *G* has average degree at least 12*k*. The main result in [\[10\]](#page--1-13), however, consisted of minimum degree and degreesum bounds for a graph on *n* vertices to be *k*-linked. Both [\[13](#page--1-11)[,10\]](#page--1-13) were published around the same time and borrowed ideas from each other, hence the similarity of their results and methodology.

We generalize the concept of H -linkedness to include subdivisions where only a certain set of vertices in $V(H)$ is mapped into $V(G)$ arbitrarily. Let *G* be a graph and let $\mathcal{P}(G)$ be the set of paths in *G*. Suppose we are given a multigraph *H* and a subset $S \subseteq V(H)$. Whenever we define $S \subseteq V(H)$, let $T = V(H) \setminus S$. A graph G is (H, S) -semi-linked if, for every map $f : S \hookrightarrow V(G)$, there exists a map $g : T \hookrightarrow V(G) \setminus f(S)$ and a set of $|E(H)|$ internally disjoint paths $\mathcal{P}(f,g) \subseteq \mathcal{P}(G)$ connecting vertices of *f*(*S*) ∪ *g*(*T*) for every edge between the corresponding vertices of *H*. Given *f* and *g*, such an *H*-subdivision of *G* containing $\mathcal{P}(f,g)$ is called an (H, S) -semi-linkage. (Note that $\mathcal{P}(f,g)$ contains $f(S) \cup g(T)$ as well.) Call $f(S) \cup g(T)$ the set of ground *vertices* and the paths in $\mathcal P$ *edge-paths*. Other authors (see [\[5,](#page--1-8)[6\]](#page--1-14)) have used the same terminology for an *H*-subdivision in an *H*-linked graph. In this paper, when we refer to ground vertices and edge-paths, we are referring only to those of an (*H*, *S*)-semi-linkage.

It should be noted that (*H*, *S*)-semi-linkedness completes the spectrum of linkedness between a graph and an *H*subdivision. On the one hand, an (H, \emptyset) -semi-linked graph contains an *H*-subdivision (and perhaps no others), while on the other hand, an (*H*, *V*(*H*))-semi-linked graph is *H*-linked. In general, if a graph *G* is (*H*, *S*)-semi-linked, then we can always guarantee the existence of an *H*-subdivision in *G* on |*S*| arbitrary vertices in *V*(*G*).

We now define $s(H, S)$, a generalization of $b(H)$ that is used in our main result. Suppose we are given a multigraph *H* and a subset $S \subseteq V(H)$. Let c_S and c_T be (possibly improper) colorings of *S* and *T*, respectively, using the color set {red, blue, green}. Let *R*, *U*, and *N* be the sets of red, blue, and green vertices in *V*(*H*), respectively, and let *e*(*A*, *B*) denote the number of edges between (disjoint) vertex sets *A* and *B*. Finally, recall that κ(*G*) denotes the connectivity of *G*.

It is a known result [\[1\]](#page--1-15) that a graph *G* with minimum degree $\delta(G)$ and connectivity $\kappa(G)$ satisfies $\kappa(G) \geq 2\delta(G) + 2 - n$. I.e., if $\delta(G) \geq \frac{n+a-2}{2}$ for $a \geq 0$, then $\kappa(G) \geq a$. Define

$$
s(H, S) = \max_{c_S} \ \min_{c_T} \{|N| + e(R, U)\} - 2;
$$

the condition $\delta(G) \ge \frac{n+s(H,S)}{2}$ then guarantees $\kappa(G) \ge s(H,S) + 2 = \max_{c_S} \min_{c_T} \{|N| + e(R,U)\}.$ The following example gives a calculation of s (H, S) for a multigraph H and vertex set $S \subseteq V(H).$

Example 1. Consider the multigraph *H* and vertex set $S \subseteq V(H)$ in [Fig. 1.](#page-1-0) Considering all colorings c_S and all subsequent colorings c_T , we find that $c'_S =$ {red, green, blue} and $c'_T =$ {blue, red, blue, blue}, together with their green, red, and blue sets N', R', and U', respectively, produce the value $|N'|+e(R', U')=s(H, S)+2 = \max_{c_S} \min_{c_T} \{|N|+e(R, U)\}=1+4=5$ (see [Fig. 2\)](#page--1-16).

Any graph *G* with a minimum cutset *C* satisfying |*C*| < 5 is not (*H*, *S*)-semi-linked, as the green vertex in *H* may be mapped into *C* and the 4 red-to-blue edges in *H* may be mapped to internally disjoint paths in *G*, each passing through *C*.

Download English Version:

<https://daneshyari.com/en/article/4647335>

Download Persian Version:

<https://daneshyari.com/article/4647335>

[Daneshyari.com](https://daneshyari.com)