Contents lists available at ScienceDirect

## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

## Note On large semi-linked graphs

### Alexander Halperin<sup>a,\*</sup>, Colton Magnant<sup>b</sup>, Hua Wang<sup>b</sup>

<sup>a</sup> Department of Mathematics and Computer Science, Salisbury University, 1101 Camden Ave., Salisbury, MD 21804, United States <sup>b</sup> Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Ave., Room 3008, P.O. Box 8093, Statesboro, GA 30460, United States

#### ARTICLE INFO

Article history: Received 28 September 2013 Received in revised form 26 August 2014 Accepted 27 August 2014 Available online 25 September 2014

*Keywords:* Graph linkedness Minimum degree

#### 1. Introduction

#### ABSTRACT

Let *H* be a multigraph, possibly with loops, and consider a set  $S \subseteq V(H)$ . A (simple) graph *G* is (H, S)-semi-linked if, for every injective map  $f : S \to V(G)$ , there exists an injective map  $g : V(H) \setminus S \to V(G) \setminus f(S)$  and a set of |E(H)| internally disjoint paths in *G* connecting pairs of vertices of  $f(S) \cup g(V(H) \setminus S)$  for every edge between the corresponding vertices of *H*. This new concept of (H, S)-semi-linkedness is a generalization of *H*-linkedness. We establish a sharp minimum degree condition for a sufficiently large graph *G* to be (H, S)-semi-linked.  $(\mathbb{Q} \ 2014$  Elsevier B.V. All rights reserved.

For all basic definitions and notation, see [2]. Let *H* be a multigraph, possibly with loops unless stated otherwise. We use the notation  $f : A \hookrightarrow B$  to denote an injective map f. A graph *G* is said to be *H*-linked if for every mapping  $f : V(H) \hookrightarrow V(G)$ , there is a mapping of the edges of *H* to paths of *G* that are vertex-disjoint except for the ends, which are the vertices  $w \in G$  such that f(v) = w for some  $v \in H$ . Such a mapping [14] is called an *H*-subdivision (or topological minor [3]) in *G*. For brevity, let |H| = |V(H)| and e(H) = |E(H)|.

The idea of *H*-linkedness was first introduced by Jung in [9] and then developed in [8,15]. Since then, there have been recent developments on the minimum degree criteria for a graph to be *H*-linked. Let *H* be a connected *loopless* multigraph. Kostochka and Yu determined in [11] that a graph *G* of order  $n \ge 5e(H) + 6$  with  $\delta(G) \ge \frac{n+e(H)-2}{2}$  is *H*-linked, and that the lower bound on  $\delta(G)$  is sharp for bipartite *H*. Let *B*(*H*) be the number of edges in a maximum edge-cut of *H*. The same authors later proved in [12] that if  $\delta(H) \ge 2$ , then a graph *G* of order  $n \ge 7.5e(H)$  with  $\delta(G) \ge \frac{n+B(H)-2}{2}$  is *H*-linked, and that the lower bound on  $\delta(G)$  is sharp. Now assume (for the rest of the paper) that *H* may contain loops. Ferrara, Gould, Tansey, and Whalen showed in [5] that a sufficiently large graph *G* of order *n* satisfying the sharp condition  $\delta(G) \ge \frac{n+B(H)-2}{2}$  is *H*-linked. Note that the inclusion of loops in *H* comes at the expense of a linear (or any reasonable) lower bound on *n*, although this is not to say such a lower bound is best-possible. The results from [12,5] were united in [7], and the sharp condition on  $\delta(G)$  for *G* to be *H*-linked was generalized to include *disconnected* multigraphs *H*. Most importantly for our purposes, the term b(H) was defined in [4] by Ferrara et al. as

$$b(H) = \max_{\substack{R \cup N \cup U = V(H) \\ e(R,U) > 1}} \{ |N| + e(R,U) \}.$$
(1)

In [4], Ferrara et al. generalized the main result of [7] by proving a sharp condition involving  $\sigma_2(G)$ , the minimum degree sum (of nonadjacent vertices) of *G*, for *G* to be *H*-linked. Let  $h_0$  denote the number of isolated vertices in *H*. Ferrara et al. showed

http://dx.doi.org/10.1016/j.disc.2014.08.022 0012-365X/© 2014 Elsevier B.V. All rights reserved.







<sup>\*</sup> Corresponding author. E-mail addresses: adhalperin@salisbury.edu (A. Halperin), cmagnant@georgiasouthern.edu (C. Magnant), hwang@georgiasouthern.edu (H. Wang).



Fig. 1. A multigraph H with S consisting of the three solid vertices.

that a graph *G* of order *n* with  $\delta(G) \ge 4e(H) + h_0$  and  $\sigma_2(G) \ge n + b(H) - 2$  is *H*-linked. Although the sharp examples for each of these minimum degree conditions all hinge on the connectivity of *G*, sharp connectivity criteria for *H*-linkedness remain unknown.

A special case of *H*-linkedness that is more directly related to connectivity is the concept of *k*-linkedness. A graph *G* is *k*-linked if for every choice of 2*k* distinct vertices  $s_1, \ldots, s_k, t_1, \ldots, t_k$ , there exists a set of disjoint  $(s_i, t_i)$ -paths for all *i*. It was shown in [13] that a graph *G* is *k*-linked if either *G* is 2*k*-connected and has at least 5k|G| edges or if *G* is 10*k*-connected, the latter being our Theorem 2. The former result improved Theorem 1.3 in [10], which states that a 2*k*-connected graph *G* is *k*-linked if *G* has average degree at least 12*k*. The main result in [10], however, consisted of minimum degree and degree-sum bounds for a graph on *n* vertices to be *k*-linked. Both [13,10] were published around the same time and borrowed ideas from each other, hence the similarity of their results and methodology.

We generalize the concept of *H*-linkedness to include subdivisions where only a certain set of vertices in V(H) is mapped into V(G) arbitrarily. Let *G* be a graph and let  $\mathscr{P}(G)$  be the set of paths in *G*. Suppose we are given a multigraph *H* and a subset  $S \subseteq V(H)$ . Whenever we define  $S \subseteq V(H)$ , let  $T = V(H) \setminus S$ . A graph *G* is (H, S)-semi-linked if, for every map  $f : S \hookrightarrow V(G)$ , there exists a map  $g : T \hookrightarrow V(G) \setminus f(S)$  and a set of |E(H)| internally disjoint paths  $\mathscr{P}(f, g) \subseteq \mathscr{P}(G)$  connecting vertices of  $f(S) \cup g(T)$  for every edge between the corresponding vertices of *H*. Given *f* and *g*, such an *H*-subdivision of *G* containing  $\mathscr{P}(f, g)$  is called an (H, S)-semi-linkage. (Note that  $\mathscr{P}(f, g)$  contains  $f(S) \cup g(T)$  as well.) Call  $f(S) \cup g(T)$  the set of ground vertices and the paths in  $\mathscr{P}$  edge-paths. Other authors (see [5,6]) have used the same terminology for an *H*-subdivision in an *H*-linked graph. In this paper, when we refer to ground vertices and edge-paths, we are referring only to those of an (H, S)-semi-linkage.

It should be noted that (H, S)-semi-linkedness completes the spectrum of linkedness between a graph and an *H*-subdivision. On the one hand, an  $(H, \emptyset)$ -semi-linked graph contains an *H*-subdivision (and perhaps no others), while on the other hand, an (H, V(H))-semi-linked graph is *H*-linked. In general, if a graph *G* is (H, S)-semi-linked, then we can always guarantee the existence of an *H*-subdivision in *G* on |S| arbitrary vertices in V(G).

We now define s(H, S), a generalization of b(H) that is used in our main result. Suppose we are given a multigraph H and a subset  $S \subseteq V(H)$ . Let  $c_S$  and  $c_T$  be (possibly improper) colorings of S and T, respectively, using the color set {red, blue, green}. Let R, U, and N be the sets of red, blue, and green vertices in V(H), respectively, and let e(A, B) denote the number of edges between (disjoint) vertex sets A and B. Finally, recall that  $\kappa(G)$  denotes the connectivity of G.

It is a known result [1] that a graph *G* with minimum degree  $\delta(G)$  and connectivity  $\kappa(G)$  satisfies  $\kappa(G) \ge 2\delta(G) + 2 - n$ . I.e., if  $\delta(G) \ge \frac{n+a-2}{2}$  for  $a \ge 0$ , then  $\kappa(G) \ge a$ . Define

$$s(H, S) = \max_{c_S} \min_{c_T} \{ |N| + e(R, U) \} - 2;$$

the condition  $\delta(G) \ge \frac{n+s(H,S)}{2}$  then guarantees  $\kappa(G) \ge s(H,S) + 2 = \max_{c_S} \min_{c_T} \{|N| + e(R,U)\}$ . The following example gives a calculation of s(H,S) for a multigraph H and vertex set  $S \subseteq V(H)$ .

**Example 1.** Consider the multigraph *H* and vertex set  $S \subseteq V(H)$  in Fig. 1. Considering all colorings  $c_s$  and all subsequent colorings  $c_T$ , we find that  $c'_s = \{\text{red, green, blue}\}$  and  $c'_T = \{\text{blue, red, blue}\}$ , together with their green, red, and blue sets N', R', and U', respectively, produce the value  $|N'| + e(R', U') = s(H, S) + 2 = \max_{c_s} \min_{c_T} \{|N| + e(R, U)\} = 1 + 4 = 5$  (see Fig. 2).

Any graph *G* with a minimum cutset *C* satisfying |C| < 5 is not (H, S)-semi-linked, as the green vertex in *H* may be mapped into *C* and the 4 red-to-blue edges in *H* may be mapped to internally disjoint paths in *G*, each passing through *C*.  $\Box$ 

Download English Version:

# https://daneshyari.com/en/article/4647335

Download Persian Version:

https://daneshyari.com/article/4647335

Daneshyari.com