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a b s t r a c t

Folding a sequence into a multidimensional box is an important technique in multidimen-
sional coding. In this paper, the definition of folding defined by T. Etzion is explained from
an algebraic point of view, and furthermore, a necessary and sufficient condition is derived
for the existence of a folding for any given shape in Zm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Somememory devices, such as page-oriented optical memories [12] and holographic storage [8,9], require that informa-
tion is stored on two-dimensional surfaces and two-dimensional error patterns must be recovered. Here we refer to errors
as burst errors, which mean that errors are confined in a cluster.

Folding is one of important techniques inmultidimensional coding. In some recent papers [1–3,6,7,14], one-dimensional
burst-correcting codes or error-correcting codes were transferred into two-dimensional codes. Other applications about
this technique include synchronization patterns [13], and pseudo-random arrays [4,11]. T. Etzion generalized the defini-
tion of folding using lattice tiling in [5]. His definition makes one-dimensional codes feasible not only for multidimensional
boxes, but also for many other different shapes. Moreover, all previous known definitions of folding are special cases of his
definition.

The rest of this paper is organized as follows. In Section 2 we introduce T. Etzion’s definition of folding and explain it
from an algebraic point of view. In Section 3 we discuss the existence of a folding for any given shape in Zm. Finally, the
conclusions are given in Section 4.

2. Lattice tiling and folding

We start this section with a short introduction to the lattice tiling.
Let m be a positive integer, Z be the ring of integers, and Zm be the set of all m-tuples over Z. In this paper we always

write vectors in Zm as column vectors. Any subset S of Zm is called an m-dimensional shape. Without loss of generality we
assume that the origin is in S. We shall be solely interested in sublattices of Zm since our shapes are defined in Zm. For any
vectors v1, . . . , vm ∈ Zm, if they are linearly independent over Z, then the abelian group Λ = Zv1 + · · · + Zvm is called an
m-dimensional lattice, and {v1, . . . , vm} is called a basis of Λ. Let G be the m × m matrix with vi’s as its columns, then G is
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called a generator matrix of Λ. For an m-dimensional shape S and an m-dimensional lattice Λ, if(g1 + S) ∩ (g2 + S) = ∅, ∀g1, g2 ∈ Λ, g1 ≠ g2; and
g∈Λ

(g + S) = Zm, (1)

i.e., disjoint copies of S cover Zm, we say that (Λ, S) is a lattice tiling of Zm.
The following definition is due to Etzion [5]. Let (Λ, S) be a lattice tiling of Zm, and δ be a nonzero vector in Zm, we define

recursively a folded-row starting at the origin. If the point s ∈ S is the current point in the folded-row, then the next point
in the folded-row is defined as follows: If s + δ ∈ S, then it is the next point; if s + δ ∈ g + S, a disjoint copy of S, for some
g ∈ Λ, then s + δ − g ∈ S is the next point. If the folded-row defined above includes all the points of S, we say that the
triple (Λ, S, δ) defines a folding, and δ is a direction vector.

Now we give a new explanation of the above definition. Clearly, (1) is equivalent to
(s1 + Λ) ∩ (s2 + Λ) = ∅, ∀s1, s2 ∈ S, s1 ≠ s2; and
s∈S

(s + Λ) = Zm. (2)

Thus, if (Λ, S, δ) defines a folding, then S is a complete set of coset representatives of Λ in Zm. Moreover, if the elements
in the folded-row defined by (Λ, S, δ) are regarded as the elements in the quotient group Zm/Λ, then they form the cyclic
group generated by δ+Λ, and hence,Zm/Λ is the cyclic groupwith δ+Λ as a generator. The converse is also true. Therefore
we get the following theorem.

Theorem 1. Let S be a shape in Zm, Λ be an m-dimensional lattice, and let δ be a vector in Zm. Then the triple (Λ, S, δ) defines
a folding if and only if Zm/Λ is the cyclic group with δ + Λ being a generator, and S is a complete set of coset representatives of
Λ in Zm. �

A nature question is whether there exists a folding for any given shape.We shall discuss this question in the next section.
Actually, a folding (Λ, S, δ) yields an order for the points in the shape S. In multidimensional coding one-dimensional

codes are written into the shape S one by one in the order defined by (Λ, S, δ).

3. Existence of a folding

We first introduce some basic properties about matrices over Z. The reader may refer to the chapter 3 of [10] for details.
Denote the set of allm×mmatrices over Z byMatm×m(Z). For any P ∈ Matm×m(Z), P is invertible if and only if det P = ±1.
For any A ∈ Matm×m(Z), there exist invertible matrices P,Q ∈ Matm×m(Z) such that

PAQ = diag{d1, . . . , dr , 0, . . . , 0}, (3)

where r = rank A and d1, . . . , dr are positive integers such that d1 | d2 | · · · | dr . Moreover, the diagonal matrix in (3) is
uniquely determined by A, and is called the Smith normal form of A.

By Theorem 1we know that the existence of a folding for a given shape S completely depends on the existence of a lattice
Λ satisfying some conditions, and the direction vector δ only determines the order of the points in the folded-row. Thus the
following theorem is immediate.

Theorem 2. Let S be a shape in Zm. Then there exists a folding for S if and only if there exists an m-dimensional lattice Λ such
that Zm/Λ is cyclic and S is a complete set of coset representatives of Λ in Zm. �

Lemma 1. Let Λ be an m-dimensional lattice, and let G be a generator matrix of Λ. Then Zm/Λ is cyclic if and only if the Smith
normal form of G is diag{1, . . . , 1, n}, where n = | detG|.

Proof. Assume that G = (v1, . . . , vm). For i = 1, . . . ,m, let εi be the vector with 1 in the ith position and zeros elsewhere.
Then {ε1, . . . , εm} is a basis of Zm, and

(v1, . . . , vm) = (ε1, . . . , εm)G.

There exist invertible matrices P and Q such that

PGQ = diag{d1, . . . , dm},

where di’s are positive integers such that d1 | · · · | dm. Clearly, | detG| = d1 · · · dm. Let

(f1, . . . , fm) = (v1, . . . , vm)Q , (e1, . . . , em) = (ε1, . . . , εm)P−1. (4)

Since Q and P−1 are invertible, {f1, . . . , fm} is also a basis of Λ, and {e1, . . . , em} is also a basis of Zm. Moreover,

(f1, . . . , fm) = (v1, . . . , vm)Q = (ε1, . . . , εm)GQ
= (ε1, . . . , εm)P−1PGQ = (e1, . . . , em)diag{d1, . . . , dm},
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