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a b s t r a c t

Generalizing a result of Conway, Sloane, and Wilkes (1989) for real reflection groups, we
show the Cayley graph of an imprimitive complex reflection groupwith respect to standard
generating reflections has a Hamiltonian cycle. This is consistent with the long-standing
conjecture that for every finite group, G, and every set of generators, S, of G the undirected
Cayley graph of Gwith respect to S has a Hamiltonian cycle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a finite group G and a subset S of G \ {1}, the (right, undirected) Cayley graph of G with respect to S, Γ (G, S), has
vertices corresponding to the elements g ∈ G and edges (g, gs) and (g, gs−1) for each g ∈ G and s ∈ S. The Cayley graph
is vertex-transitive, regular, and connected when S generates G, which we assume throughout. Label the edge from g to gs
by s and that from gs to g by s−1 (note that edge labels for Γ (G, S) are drawn from S ∪ S−1). It is common to consider both
together as a single undirected edge with s and s−1 indicating travel along the edge in the appropriate direction.

A path inΓ is an ordered sequence of adjacent vertices inΓ and a path is self-avoiding if no vertex appearsmore than once.
AHamiltonian path is a self-avoiding path containing every vertex ofΓ .When the initial and the final vertex of a Hamiltonian
path are adjacent it determines a Hamiltonian cycle and a graph containing a Hamiltonian cycle is called Hamiltonian.

The question, dating back to 1969 in a monograph by Lovász, of whether every connected vertex-transitive graph has a
Hamiltonian path, remains unresolved. The stronger claim, that every connected vertex-transitive graph has a Hamiltonian
cycle, is known to be false and it has been observed that the four known counterexamples are not Cayley graphs. The
resulting conjecture that for every finite group G and any generating set S the Cayley graph Γ (G, S) has a Hamiltonian
cycle also remains unresolved and finding such a cycle is an NP-complete problem in general. See [31,9,21,26] for surveys of
the status and history of the problem and references, including those supplying counter-conjectures. When S is not closed
under inversion, it is possible for the directed graph with vertices the elements of G and only edges (g, gs) for g ∈ G and
s ∈ S to have no Hamiltonian cycle. For instance, the directed circulant graph on Z12 with generators 3, 4 (and 6) is not
Hamiltonian (see [31,24]).

The conjecture that every (undirected) Cayley graph is Hamiltonian is easy to prove for abelian groups and known to be
true for several specific types of groups that are nearly abelian, with either specific or arbitrary generating sets. For instance
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the conjecture has been shown true when

• G is a p-group [29],
• the commutator subgroup G′ is a cyclic p-group [25,12,13,19,11],
• the order of G has few prime factors [22],
• the order of G is odd and G′ has order pq or is cyclic of order paqb for a, b ≥ 0 [30],
• G is nilpotent and G′ is cyclic [15].

It is also known that the Cayley graph of the semidirect product of two cyclic groups with respect to a specific generating
set is Hamiltonian [1]. We prove as our main result (Theorem 4.7) that the conjecture is true for the highly non-abelian
infinite family of complex reflection groups, G = G(de, e, n) ∼= µn o Sn with respect to commonly used generating sets of
reflections. Here µ is the cyclic group of de-th roots of unity.

Main Result. If G is an irreducible imprimitive complex reflection group and S is a standard generating set for G, then the
(undirected right) Cayley graph Γ (G, S) has a Hamiltonian cycle.

Our result generalizes that in [7], which provides an algorithm to generate a Hamiltonian cycle in each Γ (G, S) where
G is a finite real reflection group and S is the standard set of generating simple reflections. That paper utilized the Coxeter
presentation of the groups to give an inductive proof of the existence, and hence recursive construction, of a Hamiltonian
cycle. It also explicitly treats the small number of base cases.

Although there is no such uniformly well-behaved presentation or set of generators for complex reflection groups
(see [4,28]), we use those that go back to [8,6] and are given in the standard Refs. [5,23]. While these presentations,
generating sets, and resulting Cayley graphs do not tend to satisfy the usual conditions for the existence of Hamiltonian
cycles currently given in the literature (see further discussion at the end of Section 2), they do allow for an inductive approach
similar to that in [7]. In order to exploit that approach wemust treat six infinite families of groups as base cases. For three of
these families we explicitly write down Hamiltonian cycles and in the remaining three cases our proofs provide a method
for doing so.

In two cases we utilize a process we call flipping which is sometimes referred to in the literature as a Pósa exchange and
is similar to a process utilized in a probabilistic algorithm to find Hamiltonian cycles in general graphs (see [2]). It would
be interesting to further explore the application of the flipping process and related algorithms to Cayley graphs of complex
reflection groups and in particular, to determine whether there exist obstructions to their success in these graphs and if so,
under what conditions. Another interesting directionwould be to investigate how our result might be of use in group coding
(see [20]).

The paper is organized as follows. In Section 2, following [14], we review necessary facts about real reflection groups
and summarize the classification of complex reflection groups due to Shephard and Todd [27]. The classification consists
of a three-parameter infinite family, G(de, e, n), along with 34 exceptional groups. This paper treats only the G(de, e, n),
though we have conducted some initial investigations for the exceptional complex reflection groups. Generating sets S for
the G(de, e, n) are also given in Section 2. Our formulations of the commonly used Factor Group Lemma (see [22]), the
flipping process, and the method of lifting cycles from quotient graphs are described in Section 3. The main result and its
proof, including all base case lemmas, appear in Section 4.

2. Background on reflection groups

A Coxeter system (G, S) is a group Gwith set of generators S = {s1, . . . , sn} that has a presentation of the form

G = ⟨s1, . . . , sn | (sisj)mij⟩,

where mii = 1 and mij = mji ≥ 2 for 1 ≤ i ≠ j ≤ n. Such a group is called a Coxeter group and is more commonly
denoted W due to the connection with Weyl groups. The presentations of Coxeter groups are classified using diagrams
that graphically encode the si and the mij. The classification of finite irreducible Coxeter groups consists of four infinite
families and six exceptional groups. Finite Coxeter groups have a geometric incarnation as they are exactly the finite groups
generated by orthogonal reflections of a real vector space (see [3,17]). It can also be shown that there is a natural set of
generating reflections up to conjugacy, so such a choice is fixed and these are termed simple reflections. Every Cayley graph
Γ (G, S)with G a finite irreducible Coxeter group and S a set of simple reflections is shown in [7] to have a Hamiltonian cycle.

The notions of reflection and classification of finite groups generated by reflections extend to the setting of an n-
dimensional complex vector space V (for a brief survey, see [14]). A linear transformation r : V → V is a reflection if it
is of finite order and has a +1-eigenspace of dimension n − 1. In the remaining complex dimension the reflection acts
by a root of unity and hence may have order greater than two. A finite subgroup, G, of GL(V ) generated by reflections is
called a reflection group on V . Since G is finite, the standard averaging technique makes it possible to fix a non-degenerate
G-invariant hermitian form on V and consider G as a subgroup of the unitary group on V . Finiteness of G also guarantees
the representation on V is completely reducible, which means it suffices to consider reflection groups and spaces on which
they act irreducibly. More precisely, G is said to act irreducibly in dimension k if its fixed point space is of dimension n − k
and it acts irreducibly when restricted to the complement of that fixed point space.
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