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a b s t r a c t

A graph G is k-Hamilton-connected (k-hamiltonian) if G−X is Hamilton-connected (hamil-
tonian) for every set X ⊂ V (G) with |X | = k. In the paper, we prove that

(i) every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-
connected,

(ii) every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected.

As a byproduct, we also show that every 5-connected line graph with minimum degree at
least 6 is 3-hamiltonian.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We follow the most common graph-theoretical terminology and for concepts and notations not defined here we refer
e.g. to [1]. Specifically, by a graphwe mean a finite undirected graph G = (V (G), E(G)); in general, we allow graphs to have
multiple edges. We use dG(x) to denote the degree of a vertex x, and we set Vi(G) = {x ∈ V (G)|dG(x) = i}, V≤i(G) = {x ∈

V (G)|dG(x) ≤ i} and V≥i(G) = {x ∈ V (G)|dG(x) ≥ i}. The weight of an edge e is the number of edges incident with e and
distinct from it.

For a set M ⊂ V (G), ⟨M⟩G denotes the induced subgraph on M , and for a simple graph F ,G is said to be F-free if G is a
simple graph that does not contain an induced subgraph isomorphic to F . Specifically, for F = K1,3 we say that G is claw-free.
The hourglassΓ is the only graphwith degree sequence 4, 2, 2, 2, 2 (see Fig. 2), and for F = Γ we say thatG is hourglass-free.

The neighborhood of a vertex x, denoted NG(x), is the set of all neighbors of x, and a vertex x ∈ V (G) is simplicial
(locally connected, locally disconnected, eligible) if ⟨NG(x)⟩G is a complete (connected, disconnected, connected noncomplete)
subgraph of G. We will use VEL(G) to denote the set of all eligible vertices in G. The closed neighborhood of a vertex x is the
set NG[x] = NG(x) ∪ {x}, and an edge e ∈ E(G) is pendant if one of its vertices is of degree 1.

For x ∈ V (G),G − x is the graph obtained from G by removing x and all edges incident to it. If x, y ∈ V (G) are such that
e = xy ∉ E(G), then G+ e is the graph with V (G+ e) = V (G) and E(G+ e) = E(G) ∪ {e}, and, conversely, for e = xy ∈ E(G)
we denote G − e the graph with V (G − e) = V (G) and E(G − e) = E(G) \ {e}. Specifically, for F ⊂ G and e ∈ E(G), we set
F − e = F if e ∈ E(G) \ E(F). We use ω(G) to denote the number of components of G.

A graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length |V (G)|, and G is Hamilton-connected if, for
any a, b ∈ V (G),G contains a hamiltonian (a, b)-path, i.e., an (a, b)-path P with V (P) = V (G). For k ≥ 1,G is k-hamiltonian
if G − X is hamiltonian for every set of vertices X ⊂ V (G) with |X | = k, and k-Hamilton-connected if G − X is Hamilton-
connected for every set of vertices X ⊂ V (G) with |X | = k. Note that a hamiltonian graph is necessarily 2-connected, a
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Hamilton-connected graphmust be 3-connected, a k-hamiltonian graphmust be (k+2)-connected, and if G is k-Hamilton-
connected, then G must be (k + 3)-connected. The line graph of a graph H is the simple graph L(H) with vertex set E(H), in
which two vertices are adjacent if and only if the corresponding edges of H share a vertex, and a graph G is a line graph if
there is a graph H such that G = L(H). Note that every line graph is claw-free, and that the degree of a vertex in G equals
the weight of the corresponding edge in H .

The main motivation of our research is the following conjecture by Thomassen.

Conjecture A ([18]). Every 4-connected line graph is hamiltonian.

There are many known equivalent versions of the conjecture (see [3] for a survey on this topic). We mention here the
following one, which is of importance for our results.

Theorem B ([16]). The following statements are equivalent:

(i) Every 4-connected line graph is hamiltonian.
(ii) Every 4-connected claw-free graph is 1-Hamilton-connected.

In this paper, we prove the following two results giving a partial affirmative answer to the statement (ii) of Theorem B,
i.e., equivalently, to Conjecture A:

• in Section 3, we show that every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected,
• in Section 4, we show that every 5-connected claw-free graph withminimum degree at least 6 is 1-Hamilton-connected.

As a byproduct, in Section 5 we show that every 5-connected line graph with minimum degree at least 6 is 3-hamiltonian.

2. Preliminaries

In this section we summarize some background knowledge that will be needed for our results.
LetH be a graph andG = L(H). It is well-known that if we allowH to be amultigraph, then (unlike in line graphs of simple

graphs), for a line graph G, a graph H such that G = L(H) is not uniquely determined. A simple example is the hourglass
Γ in Fig. 2, where Γ is the line graph of all three graphs to the right. As shown in [14], this difficulty can be overcome by
imposing an additional requirement that simplicial vertices in G correspond to pendant edges in H .

The basic graph of a multigraph is the simple graph with the same vertex set, in which every multiedge is replaced by a
single edge. Amultitriangle (multistar) is a multigraph such that its basic graph is a triangle (star). The center of a multistar S
withm edges is the vertex x ∈ V (S) with dS(x) = m (for |V (S)| = 2 we choose the center arbitrarily), and all other vertices
of S are its leaves. An induced multistar S in H is pendant if none of its leaves has a neighbor in V (H) \ V (S), and similarly
a multitriangle T is pendant if exactly one of its vertices (called the root) has neighbors in V (H) \ V (S). We will use the
following operations, introduced in [20] (Operation B) and [14] (Operation C).

Operation B. Choose a pendant multitriangle in H with vertices {v, x, y} and root v, delete all edges joining v and x, and add
the same number of edges between v and y.

Operation C. Choose a pendant multistar in H and replace every leaf of degree k ≥ 2 by k leaves of degree 1.

Now, for a multigraph H, BC(H) denotes the multigraph obtained from H by recursively repeating operations B and C . It
can be shown that L(H) = L(BC(H)), BC(H) is uniquely determined and has the property that simplicial vertices in L(H)
correspond to pendant edges in H .

Proposition C ([14]). Let G be a connected line graph of amultigraph. Then there is, up to an isomorphism, a uniquely determined
multigraph H such that a vertex e ∈ V (G) is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

For a line graph G, we will always consider its preimage to be the unique multigraph with the properties given in
Proposition C; this preimage will be denoted L−1(G). Similarly, we will write x = L(e) and e = L−1(x) if e ∈ E(L−1(G))
is the edge corresponding to a vertex x ∈ V (G). In accordance with our definitions, when working with a claw-free graph
or with a line graph G, we always consider G to be a simple graph, while if G is a line graph, for its preimage H = L−1(G) we
always admit H to be a multigraph, i.e. we always (even if we say ‘‘a graph H ’’) allow H to have multiple edges.

An edge cut R of a graphH is essential ifH−R has at least two nontrivial components. For an integer k > 0,H is essentially
k-edge-connected if every essential edge cut R of G contains at least k edges. Obviously, a line graph G = L(H) of order at
least k + 1 is k-connected if and only if the graph H is essentially k-edge-connected.

Given a trail T and an edge e in a multigraph G, we say that e is dominated (internally dominated) by T if e is incident to a
vertex (to an interior vertex) of T , respectively. A trail T in G is called an internally dominating trail, shortly IDT, if T internally
dominates all the edges in G. For e1, e2 ∈ E(G), an IDT with terminal edges e1, e2 will be referred to as an (e1, e2)-IDT. If T is
a closed trail, every vertex of T is considered to be an internal vertex, hence every dominated edge is internally dominated,
and we simply say that T is a dominating trail. A classical result by Harary and Nash-Williams [5] shows that a line graph
G = L(H) of order at least 3 is hamiltonian if and only if H contains a dominating closed trail. The following result relates
hamiltonian paths in a line graph to internally dominating trails in its preimage.
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