Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the order of graphs with a given girth pair

C. Balbuena [∗](#page-0-0) , J. Salas

Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona 1 i 3, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history: Received 29 November 2012 Received in revised form 1 November 2013 Accepted 14 December 2013 Available online 7 January 2014

Keywords: Girth pair Cages Excess

a b s t r a c t

A (*k*; *g*, *h*)-graph is a *k*-regular graph of girth pair (*g*, *h*) where *g* is the girth of the graph, *h* is the length of a smallest cycle of different parity than *g* and $g \lt h$. A $(k; g, h)$ -cage is a $(k; g, h)$ -graph with the least possible number of vertices denoted by $n(k; g, h)$. In this paper we give a lower bound on $n(k; g, h)$ and as a consequence we establish that every (*k*; 6)-cage is bipartite if it is free of odd cycles of length at most 2*k*−1. This is a contribution to the conjecture claiming that every (*k*; *g*)-cage with even girth *g* is bipartite. We also obtain upper bounds on the order of $(k; g, h)$ -graphs with $g = 6, 8, 12$. From the proofs of these upper bounds we obtain a construction of an infinite family of small(*k*; *g*, *h*)-graphs. In particular, the $(3, 6, h)$ -graphs obtained for $h = 7, 9, 11$ are minimal.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A (*k*; *g*)-*cage* is a *k*-regular graph of girth *g* having the minimum possible number of vertices which is denoted by *n*(*k*; *g*). Harary and Kóvacs [\[12\]](#page--1-0) generalize the concept of (*k*; *g*)-cages by replacing the girth with a *girth pair condition* (*g*, *h*), (i.e., *g* is the girth of the graph, *h* is the length of a smallest cycle of different parity than *g* and $g < h$). The authors of [\[12\]](#page--1-0) proved the existence of $(k; g, h)$ -cages with $3 < g < h$, obtaining that their order $n(k; g, h)$ must fulfill the inequality $n(k; g, h) \le 2n(k; h)$. Also, they proved that if $k \ge 3$ and $h \ge 4$, then $n(k; h - 1, h) \le n(k; h)$. In [\[17\]](#page--1-1) the strict inequality $n(k; h - 1, h) < n(k; h)$ for $k \geq 3$ and $h \geq 4$ is proved. The exact values $n(k; 4, h)$ are studied in [\[13,](#page--1-2)[15](#page--1-3)[,18\]](#page--1-4) and the exact values $n(3; 6, 7) = 18$, $n(3; 6, 9) = 24$ and $n(3; 6, 11) = 28$ are determined in [\[7\]](#page--1-5). Moreover [\[4\]](#page--1-6) contains a lower bound on $n(k; g, h)$ for odd $g \ge 5$ and even $h > g$.

In this paper we obtain a lower bound on the order of a $(k; g, h)$ -graph with $g \ge 6$ even and $h \ge g + 1$ odd. Let $n_0(k; g)$ denote the lower bound on the order of a *k*-regular graph with girth *g*. Biggs and Ito [\[6\]](#page--1-7) proved that every *k*-regular graph with even girth *g* > 6 and order at most *n*₀(*k*; *g*) + *k*−2 must be bipartite. As a consequence of our lower bound we improve this result for $g=6$ proving that every *k*-regular graph with $k\geq 3$, girth 6 and order at most $n_0(k;6)+2k^2-6k+1$ free of odd cycles of length at most 2*k* − 1 must be bipartite. Furthermore, it is conjectured that cages with even girth are bipartite [\[14,](#page--1-8)[16\]](#page--1-9). Applying our results we also contribute to this conjecture establishing that every (*k*; 6)-cage is bipartite provided that it is free of odd cycles of length at most 2*k* − 1. We also obtain an upper bound on the order of a (*k*; *g*, *h*) graph with $g = 6, 8, 12$ even and $h > g + 1$ odd. From the proofs of these upper bounds we obtain a construction of small (*k*; *g*, *h*)-graphs using two copies of a (*k*; *g*)-cage. In particular the (3; 6, *h*)-graphs obtained are minimal.

2. Terminology and known results

All graphs considered are finite, undirected and simple (without loops or multiple edges). For definitions and notations not explicitly stated the reader may refer to [\[8\]](#page--1-10).

Corresponding author. *E-mail addresses:* m.camino.balbuena@upc.edu (C. Balbuena), julian.salas@upc.edu (J. Salas).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.disc.2013.12.015>

Let *G* be a graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $U \subset V$ the subgraph induced by *U* is denoted by $G[U]$. A path between a vertex *u* and a vertex *v* will be called a *uv*-path. The distance $d_G(u, v)$ between two vertices *u* and *v* is the minimum of the lengths among the *u*v-paths of *G*. The *girth* of a graph *G* is the length *g* = *g*(*G*) of a shortest cycle. A *girdle* is a shortest cycle. The *neighborhood* $N(u) = N_G(u)$ of a vertex *u* is the set of its neighbors i.e., vertices adjacent to *u*. The *closed neighborhood* of *u* is $N[u] = N(u) \cup \{u\}$ and the neighborhood of a subset $U \subset V$ is defined as $N(U) = \bigcup_{u \in U} N(u)$. The *degree* of a vertex $v \in V$ is the cardinality of $N(u)$. A graph is called *k*-*regular* if all its vertices have the same degree *k*. A (*k*; *g*)-*graph* is a *k*-regular graph of girth *g* and a (*k*; *g*)-*cage* is a (*k*; *g*)-graph with the smallest possible number of vertices. The existence of a (*k*; *g*)-cage was established by Erdős and Sachs [\[9\]](#page--1-11). For $k \ge 3$ and $g \ge 5$ the order $n(k; g)$ of a cage is bounded by

$$
n_0(k; g) = \begin{cases} 1 + k \sum_{i=0}^{(g-3)/2} (k-1)^i & g \text{ odd}; \\ 2 \sum_{i=0}^{(g-2)/2} (k-1)^i & g \text{ even}. \end{cases}
$$
 (1)

This bound is known as the *Moore bound* for cages and cages attaining the Moore bound are called *Moore cages*. Moore cages of even girth exist only for $g \in \{4, 6, 8, 12\}$ [\[5\]](#page--1-12). For $g = 4$, they are the complete *k*-regular bipartite graphs. For *g* = 6, 8, 12, these graphs are constructed as the incidence graphs of certain finite geometries whenever *k* − 1 is a prime power. More details about constructions of cages can be found in the survey by Wong [\[16\]](#page--1-9) or in the dynamic cage survey by Exoo and Jajcay [\[10\]](#page--1-13).

The paper is organized as follows. In the following section we establish some lower bounds on $n(k; g, h)$ for $g > 6$ even and $h ≥ g + 1$ odd. As a consequence we prove that every (*k*; 6)-graph with $k ≥ 3$ and order at most $n_0(k; 6) + 2k^2 - 6k + 1 =$ 4*k* ² − 4*k* + 3 free of odd cycles of length at most 2*k* − 1 must be bipartite. Moreover, we show that every (*k*; 6)-cage is bipartite if it is free of odd cycles of length at most 2*k* − 1. In the final section we establish some upper bounds on *n*(*k*; *g*, *h*) for $g = 6, 8, 12$ and $h > g$ odd. From the proofs of these upper bounds we obtain a construction of small $(k; g, h)$ -graphs using two copies of a (k; g)-cage. In particular for $q = 2$ we have a construction of (3; 6, h)-cages for $h = 7, 9, 11$, having $n(3; 6, 7) = 18$, $n(3; 6, 9) = 24$ and $n(3; 6, 11) = 28$ vertices respectively. These exact values were already proved in [\[7\]](#page--1-5) and we have checked that each of our graphs is isomorphic to the graphs previously obtained in [\[7\]](#page--1-5).

3. Bounds

3.1. Lower bounds

 ϵ

Biggs and Ito [\[6\]](#page--1-7) proved that every $(k; g)$ -graph with even girth $g > 6$ and order at most $n_0(k; g) + k - 2$ must be bipartite. As an immediate consequence of this result we can write the following lower bound.

Corollary 3.1. $n(k; g, h) \ge n_0(k; g) + k - 1$ for $k \ge 3, g \ge 6$ *even and h odd.*

By [\(1\)](#page-1-0) we have $n_0(k; 6) = 2(k^2 - k + 1)$. Then, for $k = 3$ and $g = 6$, [Corollary 3.1](#page-1-1) yields $n(3; 6, h) \ge 16$. We find the following result in [\[7\]](#page--1-5) which is an improvement of [Corollary 3.1](#page-1-1) for $k = 3$ and $g = 6$.

Theorem 3.1 ([\[7\]](#page--1-5)). $n(3; 6, h) \ge (7h + 1)/3$ for h odd.

Our first objective is to improve [Corollary 3.1](#page-1-1) for $g = 6$ extending [Theorem 3.1](#page-1-2) for any degree $k \geq 3$. We need to prove two lemmas.

Lemma 3.1. *Let* G *be a* (*k*; *g*, *h*)-*graph with* $k \geq 3$, $g \geq 6$ *even and* $h \geq g + 1$ *odd. Let* γ *be an h-cycle of G. Then every vertex of* $G - V(\gamma)$ *is adjacent to at most one vertex of* γ *.*

Proof. Note that γ is an induced subgraph of *G* since γ has no chord, otherwise an odd *h'*-cycle with *h'* < *h* results in *G* which is a contradiction. If some vertex *z* of $G - V(y)$ is adjacent to $u, v \in V(y)$ and $d_{\gamma}(u, v) = \ell$, then *G* contains two cycles, one of length ℓ+2 and another of length *h*−ℓ+2. If ℓ is even, ℓ+2 ≥ *g* and *h*−ℓ+2 ≥ *h* must hold. Consequently, $\ell \leq 2$, implying that $\ell + 2 \leq 4$ which is a contradiction because $\ell + 2 \geq g \geq 6$. Therefore ℓ is odd, $\ell + 2 \geq h$ and *h* − ℓ + 2 ≥ *g* must hold. Then, from these two inequalities we obtain *h* − ℓ + 2 ≤ *h* − (*h* − 2) + 2 = 4 which is again a contradiction.

Lemma 3.2. *Let G be a* (*k*; *g*, *h*)*-graph with k* \geq 3, *g* \geq 6 *even and* $h \geq g + 1$ *odd. Let* γ *be an h-cycle of G and* w *any vertex in* $N(\gamma) \setminus V(\gamma)$. If $g = 6$, w *is adjacent to at most one vertex in* $N(\gamma) \setminus V(\gamma)$ *; and if* $g \geq 8$ *, w is adjacent to no vertex in* $N(\gamma) \setminus V(\gamma)$ *.*

Proof. We reason by contradiction assuming that there are x, y, $z \in N(\gamma) \setminus V(\gamma)$ such that x, $z \in N(y)$. Let $u_x, u_y, u_z \in V(\gamma)$ be such that $u_x x$, $u_y y$, $u_z z \in E(G)$. Let ℓ_1, ℓ_2 are defined as the lengths of the (u_x, u_y) -path and the (u_y, u_z) -path in an orientation of γ, where the three vertices appear in the order (*u_x*, *u_y*, *u*_{*z*}). Then the length of the (*u_x*, *u*_{*z*})-path is $\ell_1 + \ell_2$ Download English Version:

<https://daneshyari.com/en/article/4647375>

Download Persian Version:

<https://daneshyari.com/article/4647375>

[Daneshyari.com](https://daneshyari.com)