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a b s t r a c t

A (k; g, h)-graph is a k-regular graph of girth pair (g, h) where g is the girth of the graph,
h is the length of a smallest cycle of different parity than g and g < h. A (k; g, h)-cage is
a (k; g, h)-graph with the least possible number of vertices denoted by n(k; g, h). In this
paper we give a lower bound on n(k; g, h) and as a consequence we establish that every
(k; 6)-cage is bipartite if it is free of odd cycles of length atmost 2k−1. This is a contribution
to the conjecture claiming that every (k; g)-cage with even girth g is bipartite. We also
obtain upper bounds on the order of (k; g, h)-graphs with g = 6, 8, 12. From the proofs of
these upper bounds we obtain a construction of an infinite family of small (k; g, h)-graphs.
In particular, the (3; 6, h)-graphs obtained for h = 7, 9, 11 are minimal.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A (k; g)-cage is a k-regular graph of girth g having theminimum possible number of vertices which is denoted by n(k; g).
Harary and Kóvacs [12] generalize the concept of (k; g)-cages by replacing the girth with a girth pair condition (g, h), (i.e., g
is the girth of the graph, h is the length of a smallest cycle of different parity than g and g < h). The authors of [12]
proved the existence of (k; g, h)-cages with 3 ≤ g < h, obtaining that their order n(k; g, h) must fulfill the inequality
n(k; g, h) ≤ 2n(k; h). Also, they proved that if k ≥ 3 and h ≥ 4, then n(k; h − 1, h) ≤ n(k; h). In [17] the strict inequality
n(k; h − 1, h) < n(k; h) for k ≥ 3 and h ≥ 4 is proved. The exact values n(k; 4, h) are studied in [13,15,18] and the exact
values n(3; 6, 7) = 18, n(3; 6, 9) = 24 and n(3; 6, 11) = 28 are determined in [7]. Moreover [4] contains a lower bound
on n(k; g, h) for odd g ≥ 5 and even h > g .

In this paper we obtain a lower bound on the order of a (k; g, h)-graph with g ≥ 6 even and h ≥ g + 1 odd. Let n0(k; g)
denote the lower bound on the order of a k-regular graph with girth g . Biggs and Ito [6] proved that every k-regular graph
with even girth g ≥ 6 and order atmost n0(k; g)+k−2must be bipartite. As a consequence of our lower boundwe improve
this result for g = 6 proving that every k-regular graph with k ≥ 3, girth 6 and order at most n0(k; 6) + 2k2 − 6k + 1 free
of odd cycles of length at most 2k − 1 must be bipartite. Furthermore, it is conjectured that cages with even girth are
bipartite [14,16]. Applying our results we also contribute to this conjecture establishing that every (k; 6)-cage is bipartite
provided that it is free of odd cycles of length at most 2k − 1. We also obtain an upper bound on the order of a (k; g, h)-
graph with g = 6, 8, 12 even and h ≥ g + 1 odd. From the proofs of these upper bounds we obtain a construction of small
(k; g, h)-graphs using two copies of a (k; g)-cage. In particular the (3; 6, h)-graphs obtained are minimal.

2. Terminology and known results

All graphs considered are finite, undirected and simple (without loops or multiple edges). For definitions and notations
not explicitly stated the reader may refer to [8].
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Let G be a graph with vertex set V = V (G) and edge set E = E(G). If U ⊂ V the subgraph induced by U is denoted by
G[U]. A path between a vertex u and a vertex v will be called a uv-path. The distance dG(u, v) between two vertices u and v
is the minimum of the lengths among the uv-paths of G. The girth of a graph G is the length g = g(G) of a shortest cycle. A
girdle is a shortest cycle. The neighborhood N(u) = NG(u) of a vertex u is the set of its neighbors i.e., vertices adjacent to u.
The closed neighborhood of u is N[u] = N(u)∪{u} and the neighborhood of a subset U ⊂ V is defined as N(U) = ∪u∈U N(u).
The degree of a vertex v ∈ V is the cardinality of N(u). A graph is called k-regular if all its vertices have the same degree k. A
(k; g)-graph is a k-regular graph of girth g and a (k; g)-cage is a (k; g)-graph with the smallest possible number of vertices.
The existence of a (k; g)-cage was established by Erdős and Sachs [9]. For k ≥ 3 and g ≥ 5 the order n(k; g) of a cage is
bounded by

n0(k; g) =


1 + k

(g−3)/2
i=0

(k − 1)i g odd;

2
(g−2)/2

i=0

(k − 1)i g even.

(1)

This bound is known as the Moore bound for cages and cages attaining the Moore bound are called Moore cages. Moore
cages of even girth exist only for g ∈ {4, 6, 8, 12} [5]. For g = 4, they are the complete k-regular bipartite graphs. For
g = 6, 8, 12, these graphs are constructed as the incidence graphs of certain finite geometries whenever k − 1 is a prime
power. More details about constructions of cages can be found in the survey byWong [16] or in the dynamic cage survey by
Exoo and Jajcay [10].

The paper is organized as follows. In the following section we establish some lower bounds on n(k; g, h) for g ≥ 6 even
and h ≥ g+1 odd. As a consequencewe prove that every (k; 6)-graphwith k ≥ 3 and order atmost n0(k; 6)+2k2−6k+1 =

4k2 − 4k + 3 free of odd cycles of length at most 2k − 1 must be bipartite. Moreover, we show that every (k; 6)-cage is
bipartite if it is free of odd cycles of length at most 2k− 1. In the final section we establish some upper bounds on n(k; g, h)
for g = 6, 8, 12 and h > g odd. From the proofs of these upper bounds we obtain a construction of small (k; g, h)-graphs
using two copies of a (k; g)-cage. In particular for q = 2 we have a construction of (3; 6, h)-cages for h = 7, 9, 11, having
n(3; 6, 7) = 18, n(3; 6, 9) = 24 and n(3; 6, 11) = 28 vertices respectively. These exact values were already proved in [7]
and we have checked that each of our graphs is isomorphic to the graphs previously obtained in [7].

3. Bounds

3.1. Lower bounds

Biggs and Ito [6] proved that every (k; g)-graphwith even girth g ≥ 6 and order atmost n0(k; g)+k−2must be bipartite.
As an immediate consequence of this result we can write the following lower bound.

Corollary 3.1. n(k; g, h) ≥ n0(k; g) + k − 1 for k ≥ 3, g ≥ 6 even and h odd.

By (1) we have n0(k; 6) = 2(k2 − k + 1). Then, for k = 3 and g = 6, Corollary 3.1 yields n(3; 6, h) ≥ 16. We find the
following result in [7] which is an improvement of Corollary 3.1 for k = 3 and g = 6.

Theorem 3.1 ([7]). n(3; 6, h) ≥ (7h + 1)/3 for h odd.

Our first objective is to improve Corollary 3.1 for g = 6 extending Theorem 3.1 for any degree k ≥ 3. We need to prove
two lemmas.

Lemma 3.1. Let G be a (k; g, h)-graph with k ≥ 3, g ≥ 6 even and h ≥ g + 1 odd. Let γ be an h-cycle of G. Then every vertex
of G − V (γ ) is adjacent to at most one vertex of γ .

Proof. Note that γ is an induced subgraph of G since γ has no chord, otherwise an odd h′-cycle with h′ < h results in G
which is a contradiction. If some vertex z of G − V (γ ) is adjacent to u, v ∈ V (γ ) and dγ (u, v) = ℓ, then G contains two
cycles, one of length ℓ+2 and another of length h−ℓ+2. If ℓ is even, ℓ+2 ≥ g and h−ℓ+2 ≥ hmust hold. Consequently,
ℓ ≤ 2, implying that ℓ + 2 ≤ 4 which is a contradiction because ℓ + 2 ≥ g ≥ 6. Therefore ℓ is odd, ℓ + 2 ≥ h and
h − ℓ + 2 ≥ g must hold. Then, from these two inequalities we obtain h − ℓ + 2 ≤ h − (h − 2) + 2 = 4 which is again a
contradiction. �

Lemma 3.2. Let G be a (k; g, h)-graph with k ≥ 3, g ≥ 6 even and h ≥ g + 1 odd. Let γ be an h-cycle of G and w any vertex
in N(γ ) \ V (γ ). If g = 6, w is adjacent to at most one vertex in N(γ ) \ V (γ ); and if g ≥ 8, w is adjacent to no vertex in
N(γ ) \ V (γ ).

Proof. We reason by contradiction assuming that there are x, y, z ∈ N(γ )\V (γ ) such that x, z ∈ N(y). Let ux, uy, uz ∈ V (γ )
be such that uxx, uyy, uzz ∈ E(G). Let ℓ1, ℓ2 are defined as the lengths of the (ux, uy)-path and the (uy, uz)-path in an
orientation of γ , where the three vertices appear in the order (ux, uy, uz). Then the length of the (ux, uz)-path is ℓ1 + ℓ2
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