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be, where the density of G is measured by the subgraph H € G with the highest average
degree. So far, this so-called Ramsey density is known only for cliques and some trivial
graphs F. In this work we determine the Ramsey density up to some small error terms for
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1. Introduction

Ramsey'’s celebrated theorem [22] states that for any integers r and ¢, any r-coloring of the edges of a large enough
complete graph contains a monochromatic clique on £ vertices, i.e., a clique whose edges all receive the same color. In this
context we say that a graph G has the Ramsey property w.r.t. some graph F and some integer r > 2, or G is (F, r)-Ramsey for
short, if any r-coloring of the edges of G contains a monochromatic copy of F. While Ramsey’s theorem seems to rely on the
fact that a large complete graph is very dense, Folkman [9] proved that there are graphs that are Ramsey with respect to K,
and r = 2 colors which do not contain a Ky as a subgraph. This result was later generalized by NeSetfil and Rodl [19] to
the case of more than 2 colors. The smallest currently known graph that is (K3, 2)-Ramsey and K,-free has 941 vertices [7].

Not allowing a Ky -subgraph is an entirely local density restriction and still allows for graphs that are very dense globally,
in the sense that they contain many edges. Motivated by this fact, Rodl and Ruciniski [23] asked how globally sparse Ramsey
graphs can possibly be. They introduced the Ramsey density of F and r, defined as

m*(F, r) := inf{m(G) | Gis (F, r)-Ramsey}, (1)

where

e(H)
m(G) := max ,

HSG v(H)
and e(H) and v(H) denote the number of edges and vertices of H, respectively. The parameter m(G) measures the global
density of G; it is equal to half the average degree of H, maximized over all subgraphs H C G. This density parameter and
variations of it arise naturally in the theory of random graphs [4,13], and also in Nash-Williams’ theorem for the arboricity

of a graph [20] (as we shall see this theorem actually plays a crucial role in our proofs).

Kurek and Ruciriski [ 15] proved the somewhat surprising fact that the sparsest graph that is (K,, r)-Ramsey (in the sense
of (1)) is a large complete graph on as many vertices as the Ramsey number R(Ky, r) tells us; recall that the Ramsey number

(2)
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R(F, ) of F and r is defined as the minimal N = N(F, r) such that Ky is (F, r)-Ramsey. Their result shows that the Ramsey
density of cliques is
R(Ky, 1) — 1
m*(Ke, 1) = m(Kreg,.r) = —s (3)
Apart from cliques, the only graphs for which the Ramsey density is known exactly are the trivial cases of stars S; with £
rays and r > 2 colors and the path P; on 3 edges and r = 2 colors: For stars an easy pigeonholing argument shows that

r€—1)+1

r—1)+2 )

m*(Se, 1) = m(Sre—1)41) =
For P; we have m*(Ps, 2) = 1, which is also not hard to see.’

Also for an analogous parameter defined for vertex-colorings, the so-called vertex-Ramsey density introduced in [23] and
further studied in [14], relatively little is known (even though one might suspect that vertex-colorings are much easier to
deal with than edge-colorings). The authors of [ 14] offered a prize money of 400,000 ztoty (Polish currency in 1993) for the
exact determination of the vertex-Ramsey density for the case where the forbidden graph F is the path on 3 vertices and
r = 2 colors are available.

1.1. Our results

In this work we determine the Ramsey density m*(F, r) up to some small error terms for several cases when F is a
complete bipartite graph, a cycle or a path, and r > 2 colors are available.

Complete bipartite graphs. The first theorem summarizes our results for the case where F is a complete bipartite graph K p,
a < b.In[17] a general upper bound of m*(K, , r) < r(a— 1)+ 1has been derived. We are able to prove an almost matching
lower bound for the case where b is somewhat larger than a.

Theorem 1 (Complete bipartite graphs). For any integersa > 2, b > (a — 1) + 1 and r > 2 we have

r@a—1)—e <m*Kgp,r) <r(@—1)+1, (5)

_ — r(a—1)—1
wheres = ¢(a, b, r) == xR p 1) 2T @] < 1/2.

From the best known general lower bound R(Kyp, 1) > (2r \/@)u]ﬂ ("eiz”)raabﬂ71 from [5], it follows that ¢ tends to 0 for
larger values of a, b and/or r. See [5,21] for better lower bounds on R(K, », r) in special cases that can be plugged into the
lower bound in (5); see also the remarks at the end of this paper.

We note here that the upper bound for complete bipartite graphs K; 5 stated in Theorem 1 (which holds for arbitrary
values of a and b) can be slightly improved; see the remarks at the end of this paper.

Cycles. The next theorem summarizes our results for the case where F is a cycle C;. The upper bound for even cycles and the
lower bound for odd cycles follow from results presented in [23]. For even cycles we are able to prove an almost matching
lower bound.

Theorem 2 (Cycles). For any even integer £ > 4 and any integer r > 2 we have
r—e=m'(C,r) <r+1, (®)
wheree = (€, 1) == —— =L~ < 1/2.

max({R(Cy,r),2r+1}
There is a function f () such that for any odd integer £ > 3 and any integer r > 2 we have

27 < m*(Cp, 1) < f(r). (7)

The dominant terms r and 2" in these bounds for even and odd cycles, respectively, are very similar to those known
for the Ramsey number R(Cy, 1) (see [3,11,18]). However, Theorem 2 shows that, unlike the Ramsey number, the Ramsey
density does not grow unbounded for fixed r and £ — oc.

Using the best known general lower bound R(C,, 1) > (r — 1)(£ — 2) + 2 from [25], it follows that ¢ tends to O for larger
values of £ and/or r. See [21,25] for better lower bounds on R(Cy, r) in special cases that can be plugged into the lower bound
in (6); see also the remarks at the end of this paper.

1 For the lower bound proof note that any graph G with m(G) < 1 is a forest, and that each tree in this forest can be rooted and colored level by level
with alternating colors, thus avoiding a monochromatic Ps. For the upper bound proof consider the 5-cycle with an additional dangling edge attached to
every vertex.
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