Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Relating the annihilation number and the 2-domination number of a tree

Wyatt J. Desormeaux^{a,*}, Michael A. Henning^a, Douglas F. Rall^b, Anders Yeo^{a,c}

^a Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

^b Department of Mathematics, Furman University, Greenville, SC 29613, USA

^c Engineering Systems and Design, Singapore University of Technology and Design, 20 Dover Drive Singapore, 138682, Singapore

ARTICLE INFO

Article history: Received 1 June 2012 Received in revised form 23 November 2013 Accepted 26 November 2013 Available online 7 December 2013

Keywords: 2-domination 2-domination number Annihilation number

ABSTRACT

A set *S* of vertices in a graph *G* is a 2-dominating set if every vertex of *G* not in *S* is adjacent to at least two vertices in *S*. The 2-domination number $\gamma_2(G)$ is the minimum cardinality of a 2-dominating set in *G*. The annihilation number a(G) is the largest integer *k* such that the sum of the first *k* terms of the nondecreasing degree sequence of *G* is at most the number of edges in *G*. The conjecture-generating computer program, Graffiti.pc, conjectured that $\gamma_2(G) \le a(G) + 1$ holds for every connected graph *G*. It is known that this conjecture is true when the minimum degree is at least 3. The conjecture remains unresolved for minimum degree 1 or 2. In this paper, we prove that the conjecture is indeed true when *G* is a tree, and we characterize the trees that achieve equality in the bound. It is known that if *T* is a tree on *n* vertices with n_1 vertices of degree 1, then $\gamma_2(T) \le (n + n_1)/2$. As a consequence of our characterization, we also characterize trees *T* that achieve equality in this bound. \mathbb{O} 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study upper bounds on the 2-domination numbers of trees in terms of their annihilation numbers. For $k \ge 1$, a *k*-dominating set of a graph *G* is a set *S* of vertices in *G* such that every vertex outside *S* is adjacent to at least *k* vertices in *S*. Every graph *G* has a *k*-dominating set, since V(G) is such a set. The *k*-domination number of *G*, denoted by $\gamma_k(G)$, is the minimum cardinality of a *k*-dominating set of *G*. In particular, a 1-dominating set is a dominating set, and the 1-domination number $\gamma_1(G)$ is the domination number $\gamma(G)$. A *k*-dominating set of *G* of cardinality $\gamma_k(G)$ is called a γ_k -set of *G*. The concept of a *k*-dominating set was first introduced by Fink and Jacobson in 1985 [6] and is now well-studied in the literature. We refer the reader to the two books on domination by Haynes, Hedetniemi, and Slater [9,10], as well as to the excellent survey on *k*-domination in graphs by Chellali, Favaron, Hansberg, and Volkmann [2].

As explained in [11], the *annihilation number* of a graph was first introduced by Pepper in [12]. Originally it was defined in terms of a reduction process on the degree sequence similar to the Havel–Hakimi process (see [7,13]). In [12], Pepper showed an equivalent way to define the annihilation number, this is the version we will use in this work. The *annihilation number* of a graph *G*, denoted a(G), is the largest integer *k* such that the sum of the first *k* terms of the degree sequence of *G* arranged in nondecreasing order is at most the number of edges. That is if d_1, \ldots, d_n is the degree sequence of a graph *G* with *m* edges, where $d_1 \leq \cdots \leq d_n$, then the annihilation number of *G* is the largest integer *k* such that $\sum_{i=1}^k d_i \leq m$ or, equivalently, the largest integer *k* such that $\sum_{i=1}^k d_i \leq \sum_{i=k+1}^n d_i$.

* Corresponding author.

E-mail addresses: wjdesormeaux@gmail.com (W.J. Desormeaux), mahenning@uj.ac.za (M.A. Henning), doug.rall@furman.edu (D.F. Rall), andersyeo@gmail.com (A. Yeo).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.11.020

16

The conjecture-generating computer program, Graffiti.pc, made the following conjecture relating the 2-domination number of a graph and its annihilation number.

Conjecture 1 ([3]). If *G* is a connected graph with at least 2 vertices, then $\gamma_2(G) \le a(G) + 1$.

It is known that Conjecture 1 is true when the minimum degree is at least 3. Conjecture 1 is still unresolved when the minimum degree of *G* is 1 or 2. Proving the conjecture for trees may be the most interesting case. Our aim in this paper is threefold: first to prove that Conjecture 1 is indeed true for trees. Secondly to characterize the extremal trees achieving equality in the upper bound of Conjecture 1. Thirdly to characterize trees with the largest possible 2-domination number.

1.1. Notation

In this paper, the word "graph" is used to denote a "simple graph" with no loops or multiple edges. For notation and graph theory terminology not defined herein, we in general follow [9]. We write V(G) and E(G) for the vertex set and edge set of a graph G. Usually, we use *n* for the number of vertices and *m* for the number of edges. We write $N_G(v)$ and $d_G(v)$ for the neighborhood and degree of a vertex $v \in V(G)$. We extend the notion of neighborhood to sets by letting $N_G(S) = \bigcup_{v \in S} N(v)$ for any $S \subseteq V(G)$. If the graph *G* is clear from the context, we simply write N(v), N(S), and d(v) rather than $N_G(v)$, $N_G(S)$, and $d_G(v)$, respectively. The minimum degree among the vertices of *G* is denoted by $\delta(G)$. The matching number is the maximum size of a matching in *G* and is denoted by $\alpha'(G)$. A vertex of degree 1 is called a *leaf*, its neighbor is a *support vertex*, and its incident edge is a *pendant edge*. We denote the set of leaves of a tree *T* by L(T). A *star* is a tree with at most one non-leaf vertex. The *corona* of a graph *G*, denoted $G \circ K_1$, is formed from *G* by adding for each $v \in V(G)$, a new vertex v' and the pendant edge vv'.

For a set $S \subseteq V(G)$, we let G[S] denote the subgraph induced by S. The graph obtained from G by deleting the vertices in S and all edges incident with vertices in S is denoted by G - S. In the special case when $S = \{v\}$, we also denote G - S by G - v for simplicity. For a set $S \subseteq V(G)$ and $v \in V(G)$, we denote by $d_S(v)$ the number of all vertices in S that are adjacent to v. In particular, when S = V(G), we note $d_S(v) = d(v)$. For a subset $S \subseteq V(G)$, we define

$$\Sigma(S,G) = \sum_{v \in S} d_G(v).$$

For a graph *G* with *m* edges, we define an *a*-set of *G* to be a (not necessarily unique) set *S* of vertices in *G* such that |S| = a(G) and $\sum_{v \in S} d_G(v) \le m$. We define an a_{\min} -set of *G* to be an *a*-set *S* of *G*, such that $\Sigma(S, G)$ is a minimum. Hence if *S* is an a_{\min} -set of *G*, then *S* is a set of (not necessarily unique) vertices corresponding to the first a(G) vertices in the nondecreasing degree sequence of *G*.

In order to prove Conjecture 1 for trees, we introduce a slight variation of the annihilation number of a graph. We define the *upper annihilation number* of a graph *G*, denoted $a^*(G)$, to be the largest integer *k* such that the sum of the first *k* terms of the degree sequence of *G* arranged in nondecreasing order is at most |E(G)| + 1. That is if d_1, \ldots, d_n is the degree sequence of a graph *G* with *m* edges, where $d_1 \leq \cdots \leq d_n$, then the upper annihilation number of *G* is the largest integer *k* such that $\sum_{i=1}^{k} d_i \leq m + 1$. We define an a_{\min}^* -set of *G* to be a (not necessarily unique) set S^* of vertices in *G* such that $|S^*| = a^*(G)$ and S^* corresponds to the first $a^*(G)$ vertices in the nondecreasing degree sequence of *G*.

1.2. Known results and observations

In their introductory paper on *k*-domination, Fink and Jacobson [6] established the following lower bound on the *k*-domination number of a tree.

Theorem 1 ([6]). For $k \ge 1$, if T is a tree with n vertices, then $\gamma_k(T) \ge ((k-1)n+1)/k$.

As a special case of Theorem 1, if *T* is a tree with *n* vertices, then $\gamma_2(T) \ge (n + 1)/2$. The following upper bound on the 2-domination number of a tree was observed in several papers.

Theorem 2 ([5,8,14]). If T is a tree with n vertices and n_1 leaves, then $\gamma_2(T) \leq (n + n_1)/2$.

Caro and Roditty [1] and Strake and Volkmann [15] established the following upper bound on the *k*-domination number of a graph.

Theorem 3 ([1,15]). For every graph G with n vertices and every integer $k \ge 1$, if $\delta(G) \ge 2k - 1$, then $\gamma_k(G) \le \lfloor n/2 \rfloor$.

In the special case when k = 2, the result of Theorem 3 states that if *G* is a graph with *n* vertices and $\delta(G) \ge 3$, then $\gamma_2(G) \le \lfloor n/2 \rfloor$. Since $\alpha'(G) \le \lfloor n/2 \rfloor$ for any graph *G* with *n* vertices, this result was improved in the following theorem.

Theorem 4 ([4]). Let k be a positive integer. If G is any graph with $\delta(G) \ge 2k - 1$, then $\gamma_k(G) \le \alpha'(G)$.

We remark that both Theorems 2 and 3 follow from a more general result in Hansberg et al. [8].

Download English Version:

https://daneshyari.com/en/article/4647400

Download Persian Version:

https://daneshyari.com/article/4647400

Daneshyari.com