The critical group of a clique-inserted graph

Haiyan Chen ${ }^{\text {a,* }}$, Fuji Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Sciences, Jimei University, Xiamen 361021, China
${ }^{\mathrm{b}}$ Institute of Mathematics, Xiamen University, Xiamen 361005, China

ARTICLE INFO

Article history:

Received 9 July 2013
Received in revised form 15 November 2013
Accepted 21 November 2013
Available online 8 December 2013

Keywords:

Critical group
Clique-inserted graph
Regular graph
Cycle space
Bond space

Abstract

In this paper, we consider the relations between the critical group of a regular graph G and that of its clique-inserted graph (or para-line graph) $C(G)$. First, we construct a group homomorphism between these two critical groups of G and $C(G)$. Based on the homomorphism, we show that the critical group of G is isomorphic to a quotient of that of $C(G)$ if G is not bipartite, and the minimal number of generators for the critical group of $C(G)$ is equal to the number of independent cycles in G if G is 2-edge connected. Second, by computing the Smith normal form of the Laplacian matrix of a graph, we obtain invariant factors of critical groups for some small regular graphs and their corresponding cliqueinserted graphs.

© 2013 Published by Elsevier B.V.

1. Introduction

Let G be a connected graph. The critical group $K(G)$ of G is a finite abelian group whose order is the tree-number $\kappa(G)$ of G. The critical group $K(G)$ is a subtle isomorphism invariant of G, closely related to the cycle and bond spaces of the graph, the graph Laplacian [19,20], as well as the chip-firing game (or the abelian sandpile model) on the graph. Some of the standard results on $K(G)$ can be found in [1,5,6] and [12, Chapter 13]. But in general the relations between the critical group $K(G)$ and many other parameters of a graph G remain mysterious. So the critical group of a graph is an interesting topic for studying. Now the researches mainly concentrate on two respects. One is to determine the exact structure of $K(G)$ for some special kinds of graphs $G[2,7,10,11,14-16]$. The other is to study the relationship between the critical group of a graph and that of graphs obtained from it by various constructions. Maybe the most-known result in the latter respect is that the critical groups of a planar graph and its dual are isomorphic, which was first stated in [4], then rediscovered in [1,8], and generalized in [18]. Recently, the critical groups of line and directed line graphs are studied in [3,17] respectively. In particular, the authors of [3] showed that, for a regular non-bipartite graph, the critical group of the graph and that of its line graph determine each other uniquely in a simple fashion. Here, we shall use the same technique as in [3] to study the relations between the critical group of a graph and that of its clique-inserted graph. Following [29], we first give the formal definition of a clique-inserted graph.

Let v be a vertex of degree $d>0$ in a graph G. If G^{\prime} is the graph obtained from G by replacing the vertex v with a complete graph of order d (as illustrated in Fig. 1), then G^{\prime} is said to be obtained by a d-clique insertion at v. Let G be a d-regular graph. We will call the graph operation of doing a d-clique insertion at every vertex of G clique inserting on G. The graph obtained

[^0]

Fig. 1. The d-clique insertion at a vertex.

Fig. 2. $C(G)$ is the clique-inserted-graph of G.
from G by clique inserting will be called the clique-inserted graph of G [29] (or para-line graph [22]), denoted by $C(G)$. It is worth noting that $C(G)$ can also be viewed as the line graph of the subdivision of G (see Fig. 2).

Clearly, from any given d-regular graph, an infinite family of d-regular graphs is generated by applying clique-inserting iteratively. In particular, some interesting lattices in statistic physics, such as, the martini [21,24,26], the 3-12-12 [23-25], the 3-6-24 [13], the modified bathroom lattices [24], the Schreier graphs of the Hanoi Towers group [9], all can be constructed by clique-inserting. And Zhang [28] showed that new families of expander graphs can be constructed from the known ones in this way recently. So clique-inserting is an interesting transformation. Up to now, the relation between many parameters $C(G)$ and G had been considered, such as, the spectra, the tree-numbers, and the Kirchhoff indices. [22,27, $29,28]$. Here we consider the relation between the critical group of $C(G)$ and that of G. First the tree-numbers of G and $C(G)$ have the following nice relation.

Theorem ([29]). Let G be a connected simple d-regular graph with n vertices and m edges. Then

$$
\kappa(C(G))=(d+2)^{m-n+1} d^{m-n-1} \kappa(G)
$$

where $\kappa(G)$ is the number of spanning trees of G.
Since the order of the critical group $K(G)$ is just the tree-number of G. The above result suggests a close relationship between the critical group $K(G)$ and $K(C(G))$. The following theorem shows that in some sense it is indeed the case.

Theorem 1.1. Let G be a connected simple d-regular $(d \geq 3)$ graph with n vertices and m edges. Then there is a group homomorphism

$$
f: K(C(G)) \longrightarrow K(G)
$$

whose kernel-cokernel exact sequence

$$
0 \longrightarrow \operatorname{ker}(f) \longrightarrow K(C(G)) \longrightarrow K(G) \longrightarrow \operatorname{coker}(f) \longrightarrow 0
$$

has $\operatorname{ker}(f)$ all $d(d+2)$-torsion, and

$$
\operatorname{coker}(f)= \begin{cases}0, & \text { if } G \text { is non-bipartite; } \\ \mathbb{Z}_{d}, & \text { if } G \text { is bipartite. }\end{cases}
$$

From the above theorem, it follows that:

Corollary 1.2. Let G be a connected simple d-regular $(d \geq 3)$ graph. If G is not bipartite, then $K(G)$ is isomorphic to a quotient group of $K(C(G))$.

https://daneshyari.com/en/article/4647401

Download Persian Version:

https://daneshyari.com/article/4647401

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chey5@jmu.edu.cn (H. Chen), fjzhang@xmu.edu.cn (F. Zhang).

