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Sheffer (2014)). In this note we consider distinct distances in rectangular lattices of the
form {(i,j) € Z° |0 <i <n'"% 0 <j < n“}, forsome0 < o < 1/2, and show that
the number of distinct distances in such a lattice is ® (n). In a sense, our proof “bypasses”
Discrete geometry a deep _conjectqre in pumber theory, posed by Cil!eruelo and Granville (2007). A positive
Distinct distances resolution of this conjecture would also have implied our bound.

Lattice © 2014 Elsevier B.V. All rights reserved.

Available online 20 August 2014

Keywords:

Given a set & of n points in R?, let D($)denote the number of distinct distances that are determined by pairs of points
from #. Let D(n) = min;p|=, D($); that is, D(n) is the minimum number of distinct distances that any set of n points in
R? must always determine. In his celebrated 1946 paper [4], Erdés derived the bound D(n) = 0(n//logn) by considering
a 4/n x /n integer lattice (a variant of his technique derives the same bound for several other types of lattices; e.g., see
Sheffer [11]). Recently, after 65 years and a series of progressively larger lower bounds,! Guth and Katz [8] provided an
almost matching lower bound D(n) = £2(n/ log n).

While the problem of finding the asymptotic value of D(n)is almost completely solved, hardly anything is known about
which point sets determine a small number of distinct distances. Consider a set & of n points in the plane, such that D(P) =
O(n/+/logn). Erdds conjectured [6] that any such set “has lattice structure”. A variant of a proof of Szemerédi implies that
there exists a line that contains £2(4/log n) points of & (Szemerédi’s proof was communicated by Erdés in [5] and can be
found in [9, Theorem 13.7]). A recent result of Pach and de Zeeuw [10] implies that any constant-degree curve that con-
tains no lines and circles cannot be incident to more than O(n%/%) points of $. Another recent result by Sheffer, Zahl, and de
Zeeuw [12] implies that no line can contain £2(n’/®) points of &, and no circle can contain £2 (n*/%) such points.

In this note we make some progress towards the understanding of the structure of such sets, by showing that rectangular
lattices cannot have a sublinear number of distinct distances. Specifically, we consider the number of distinct distances that
are determined by an n'~* x n“ integer lattice, for some 0 < o < 1/2. We denote this number by D, (1).

The case @ = 1/2 is the case of the square /n x /n lattice, which determines D1/2(n) = ©(n/+/logn) distinct distances,
as already mentioned above. Surprisingly, we show here a different estimate for« < 1/2.
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Theorem 1. For o < 1/2, the number of distinct distances that are determined by an n'~% x n® integer lattice is

Dy (n) = n+ o(n).

Proof. We consider the rectangular lattice
Ry(m) ={(i,j) e 22 |0 <i<n'™* 0<j<n

Notice that every distance between a pair of points of R, (n) is also spanned by (0, 0) and another point of R, (1). This im-
mediately implies Dy (n) < n + 0(n'~%). In the rest of the proof we derive a lower bound for D, (n). For this purpose, we
consider the sublattice

R, (n) ={Gi,j) € Z* | 2n* <i<n'"* 0<j<n);

since ¢ < 1/2,R),(n) # ¥ for n > ng(«), a suitable constant depending on «. We also consider the functions
rm) = [{(i.J) € R, (n) | & +j% = m},
d(m) = [{(i.)) € R, (n) | ©* —* = m}].

Observe that the smallest (resp., largest) value of m for which d(m) # 0 is 3n%* (resp., n>~2%).
We have the identities

3 rmy =Y d(m), (1)
Zrz(m) = Zdz(m). )

The identity (1) is trivial. To see (2) we observe that the sum ), r2(m) counts the number of ordered quadruples (i, j, 7', j),
for (i, j), (', j') € R, (n), such that i? + j> = i + j2. But this quantity also counts the number of those ordered quadruples
(i,j,7,j), for (i,j), (', ) € R, (n), such that i — j = i — j?, which is the value of the sum )", d(m). Putting (1) and (2)
together we have

5 (r(;n)) 5 (a(;n)) . 5

m m

Writing My, for the set of those m with r(m) = k, we have ), k|My| = |R,,(n)|. On the other hand,

Do (n) > ) [Myl
k>1
= KM =) (k= 1)|My]
k>1 k>1
= IR, (M| = D (k= 1DIMy.
k>2

Thus Dy (n) = n — O(n** 4+ n'~*) — 3", (k — 1)|My/. Using the inequality k — 1 < (’2‘) and (3), we have

PRERNAED Y ('2‘) M= (“g”) - (d(;")) |

k>2 k>2 m m

Theorem 1 is therefore a trivial consequence of the following proposition.

Proposition 2.

Z <d(;n)> =0 (n**log’n).

m

Proof. We need the following easy lemma.

Lemma 3. If a positive integer m can be written as the product of two integers in two different ways, say m = mymy = msny,
then there exists a quadruple of positive integers (s, S, S3, S4) satisfying

my = $152, My = $354, m3 = §153, My = S$354.

Proof. Since m; divides msmy, we have m; = sys, for some s; | m3 and some s, | my. Putting s3 = ms/s; and s4 = my/s,,
we have my = $354, M3 = 1S3, and my = $354. O
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