Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A note on distinct distances in rectangular lattices*

Javier Cilleruelo^a, Micha Sharir^b, Adam Sheffer^{b,*}

^a Instituto de Ciencias Matematicas (CSIC-UAM-UC3M-UCM), and Departamento de Matematicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

^b School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

ARTICLE INFO

Article history: Received 28 February 2014 Received in revised form 25 July 2014 Accepted 26 July 2014 Available online 20 August 2014

Keywords: Discrete geometry Distinct distances Lattice

ABSTRACT

In his famous 1946 paper, Erdős (1946) proved that the points of a $\sqrt{n} \times \sqrt{n}$ portion of the integer lattice determine $\Theta(n/\sqrt{\log n})$ distinct distances, and a variant of his technique derives the same bound for $\sqrt{n} \times \sqrt{n}$ portions of several other types of lattices (e.g., see Sheffer (2014)). In this note we consider distinct distances in rectangular lattices of the form $\{(i, j) \in \mathbb{Z}^2 \mid 0 \le i \le n^{1-\alpha}, 0 \le j \le n^{\alpha}\}$, for some $0 < \alpha < 1/2$, and show that the number of distinct distances in such a lattice is $\Theta(n)$. In a sense, our proof "bypasses" a deep conjecture in number theory, posed by Cilleruelo and Granville (2007). A positive resolution of this conjecture would also have implied our bound.

© 2014 Elsevier B.V. All rights reserved.

Given a set \mathcal{P} of n points in \mathbb{R}^2 , let $D(\mathcal{P})$ denote the number of distinct distances that are determined by pairs of points from \mathcal{P} . Let $D(n) = \min_{|\mathcal{P}|=n} D(\mathcal{P})$; that is, D(n) is the minimum number of distinct distances that any set of n points in \mathbb{R}^2 must always determine. In his celebrated 1946 paper [4], Erdős derived the bound $D(n) = O(n/\sqrt{\log n})$ by considering a $\sqrt{n} \times \sqrt{n}$ integer lattice (a variant of his technique derives the same bound for several other types of lattices; e.g., see Sheffer [11]). Recently, after 65 years and a series of progressively larger lower bounds,¹ Guth and Katz [8] provided an almost matching lower bound $D(n) = \Omega(n/\log n)$.

While the problem of finding the asymptotic value of D(n) is almost completely solved, hardly anything is known about which point sets determine a small number of distinct distances. Consider a set \mathcal{P} of n points in the plane, such that $D(P) = O(n/\sqrt{\log n})$. Erdős conjectured [6] that any such set "has lattice structure". A variant of a proof of Szemerédi implies that there exists a line that contains $\Omega(\sqrt{\log n})$ points of \mathcal{P} (Szemerédi's proof was communicated by Erdős in [5] and can be found in [9, Theorem 13.7]). A recent result of Pach and de Zeeuw [10] implies that any constant-degree curve that contains no lines and circles cannot be incident to more than $O(n^{3/4})$ points of \mathcal{P} . Another recent result by Sheffer, Zahl, and de Zeeuw [12] implies that no line can contain $\Omega(n^{7/8})$ points of \mathcal{P} , and no circle can contain $\Omega(n^{5/6})$ such points.

In this note we make some progress towards the understanding of the structure of such sets, by showing that rectangular lattices cannot have a sublinear number of distinct distances. Specifically, we consider the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice, for some $0 < \alpha < 1/2$. We denote this number by $D_{\alpha}(n)$.

The case $\alpha = 1/2$ is the case of the square $\sqrt{n} \times \sqrt{n}$ lattice, which determines $D_{1/2}(n) = \Theta(n/\sqrt{\log n})$ distinct distances, as already mentioned above. Surprisingly, we show here a different estimate for $\alpha < 1/2$.

* Corresponding author.

E-mail addresses: franciscojavier.cilleruelo@uam.es (J. Cilleruelo), michas@tau.ac.il (M. Sharir), adamsh@gmail.com, sheffera@tau.ac.il (A. Sheffer).

¹ For a comprehensive list of the previous bounds, see [7] and http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html (version of February 2014).

http://dx.doi.org/10.1016/j.disc.2014.07.021 0012-365X/© 2014 Elsevier B.V. All rights reserved.

Note

^{*} The work by Javier Cilleruelo has been supported by grants MTM 2011-22851 of MICINN and ICMAT Severo Ochoa project SEV-2011-0087. The work by Adam Sheffer and Micha Sharir has been supported by Grants 338/09 and 892/13 from the Israel Science Fund, by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.

Theorem 1. For $\alpha < 1/2$, the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice is

 $D_{\alpha}(n) = n + o(n).$

Proof. We consider the rectangular lattice

 $R_{\alpha}(n) = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le i \le n^{1-\alpha}, \ 0 \le j \le n^{\alpha}\}.$

Notice that every distance between a pair of points of $R_{\alpha}(n)$ is also spanned by (0, 0) and another point of $R_{\alpha}(n)$. This immediately implies $D_{\alpha}(n) \leq n + O(n^{1-\alpha})$. In the rest of the proof we derive a lower bound for $D_{\alpha}(n)$. For this purpose, we consider the sublattice

$$R'_{\alpha}(n) = \{(i,j) \in \mathbb{Z}^2 \mid 2n^{\alpha} \le i \le n^{1-\alpha}, \ 0 \le j \le n^{\alpha}\};$$

since $\alpha < 1/2$, $R'_{\alpha}(n) \neq \emptyset$ for $n \ge n_0(\alpha)$, a suitable constant depending on α . We also consider the functions

$$r(m) = |\{(i,j) \in R'_{\alpha}(n) \mid i^{2} + j^{2} = m\}|,$$

$$d(m) = |\{(i,j) \in R'_{\alpha}(n) \mid i^{2} - j^{2} = m\}|.$$

Observe that the smallest (resp., largest) value of *m* for which $d(m) \neq 0$ is $3n^{2\alpha}$ (resp., $n^{2-2\alpha}$). We have the identities

$$\sum_{m} r(m) = \sum_{m} d(m), \tag{1}$$

$$\sum_{m} r^{2}(m) = \sum_{m} d^{2}(m).$$
(2)

The identity (1) is trivial. To see (2) we observe that the sum $\sum_{m} r^2(m)$ counts the number of ordered quadruples (i, j, i', j'), for (i, j), $(i', j') \in R'_{\alpha}(n)$, such that $i^2 + j^2 = i'^2 + j'^2$. But this quantity also counts the number of those ordered quadruples (i, j, i', j'), for (i, j'), $(i', j) \in R'_{\alpha}(n)$, such that $i^2 - j'^2 = i'^2 - j^2$, which is the value of the sum $\sum_{m} d^2(m)$. Putting (1) and (2) together we have

$$\sum_{m} \binom{r(m)}{2} = \sum_{m} \binom{d(m)}{2}.$$
(3)

Writing M_k for the set of those *m* with r(m) = k, we have $\sum_k k|M_k| = |R'_{\alpha}(n)|$. On the other hand,

$$D_{\alpha}(n) \geq \sum_{k \geq 1} |M_k|$$

= $\sum_{k \geq 1} k|M_k| - \sum_{k \geq 1} (k-1)|M_k|$
= $|R'_{\alpha}(n)| - \sum_{k \geq 2} (k-1)|M_k|.$

Thus $D_{\alpha}(n) \ge n - O(n^{2\alpha} + n^{1-\alpha}) - \sum_{k \ge 2} (k-1)|M_k|$. Using the inequality $k - 1 \le \binom{k}{2}$ and (3), we have

$$\sum_{k\geq 2} (k-1)|M_k| \leq \sum_{k\geq 2} \binom{k}{2} |M_k| = \sum_m \binom{r(m)}{2} = \sum_m \binom{d(m)}{2}.$$

Theorem 1 is therefore a trivial consequence of the following proposition.

Proposition 2.

$$\sum_{m} \binom{d(m)}{2} = O\left(n^{2\alpha} \log^2 n\right).$$

Proof. We need the following easy lemma.

Lemma 3. If a positive integer m can be written as the product of two integers in two different ways, say $m = m_1m_2 = m_3m_4$, then there exists a quadruple of positive integers (s_1, s_2, s_3, s_4) satisfying

$$m_1 = s_1 s_2, \qquad m_2 = s_3 s_4, \qquad m_3 = s_1 s_3, \qquad m_4 = s_2 s_4.$$

Proof. Since m_1 divides m_3m_4 , we have $m_1 = s_1s_2$ for some $s_1 \mid m_3$ and some $s_2 \mid m_4$. Putting $s_3 = m_3/s_1$ and $s_4 = m_4/s_2$, we have $m_2 = s_3s_4$, $m_3 = s_1s_3$, and $m_4 = s_2s_4$. \Box

Download English Version:

https://daneshyari.com/en/article/4647424

Download Persian Version:

https://daneshyari.com/article/4647424

Daneshyari.com