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a b s t r a c t

We consider the question of when the n-dimensional hypercube can be decomposed into
paths of length k. For odd n it is necessary that k divides n2n−1 and that k ≤ n. Anick and
Ramras (2013) conjectured that these two conditions are also sufficient for all odd n and
prove that this is true for odd n ≤ 232. In this note we prove the conjecture.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercubeQn is a graphwith vertex set V = {0, 1}n and edge set E = {(x, y) : ∥x−y∥1 = 1}. Problems
of decomposing the hypercube into edge-disjoint copies of smaller graphs have been considered by several authors, such as
decomposing Qn into trees [4,7], into Hamiltonian cycles and matchings [1] or into stars, K1,r for r < n [3].

Mollard and Ramras [6], motivated by applications in parallel processing (see [5]), considered the problem of
decomposing the hypercube into paths. A path of length k is a sequence of distinct vertices x1, x2, . . . , xk+1 such that for
all 1 ≤ i ≤ k(xi, xi+1) ∈ E(Qn). Mollard and Ramras [6] noted that, if n is odd, and we wish to decompose Qn into paths of
length k, there are two simple necessary conditions that k must satisfy. Firstly, since |E(Qn)| = n2n−1 we must have that k
divides n2n−1, whichwewrite as k | n2n−1. Secondly, sinceQn is n-regular, and n is odd, each vertexmust be the endpoint of
at least one of the paths, and so wemust have at least 2n−1 paths (since each path has 2 endpoints). Therefore, we must also
have that k ≤ n. They were able to prove partial results towards a converse of this. For example they showed that if k and
n are odd, and k | n, then Qn can be decomposed into paths of length k, and if also k < n, then Qn can be decomposed into
paths of length 2k. They also showed that Qn can be decomposed into paths of length 4 for all n ≥ 4. Anick and Ramras [2]
conjectured:

Conjecture 1 ([2]). Let n be odd and k such that k | n2n−1 and k ≤ n. Then Qn can be decomposed into paths of length k.

They showed that the conjecture holds for n < 232, a remarkably large bound. The main result of this note is to show
that the conjecture holds for all n.

Theorem 2. Let n be odd and k such that k | n2n−1 and k ≤ n. Then Qn can be decomposed into paths of length k.

In the next section we provide a proof of Theorem 2 and in the final section we briefly discuss what can be said about
decomposing Qn into paths of length k for even n.
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Fig. 1. Concatenation of 3 matchings, starting at X .

2. Proof of Theorem 2

Awalk of length k is a sequence of vertices x1, x2, . . . , xk+1, not necessarily distinct, such that for all 1 ≤ i ≤ k (xi, xi+1) ∈

E(Qn). We denote by even vertices the set of vertices (q1, q2, . . . , qn) ∈ Qn such that |{i : qi = 1}| is even, and similarly odd
vertices. It is apparent that Qn is a bipartite graph, with the classes being the even and the odd vertices.

We will require a few lemmas for our proof. First, we will need the following lemma, which is a simple corollary of
[2, Proposition 1].

Lemma 3. For any n let t be such that t is odd and t | n. If Q n
t
can be decomposed into paths of length s then Qn can be

decomposed into paths of length ts.

It follows from Lemma 3 that we only need to consider the case of decomposing Qn into paths of length 2r for 2r
≤ n.

Indeed, given some odd n, and k ≤ n such that k | n, we have that k = t2r for some odd t | n. So, by Lemma 3, if we can
decompose Q n

t
into paths of length 2r , then we can decompose Qn into paths of length k. Note that 2r

≤ n/t . We also note
that for any graphs H,G1 and G2, it is a simple observation that, if G1 and G2 can be decomposed into copies of H , then so
can the cartesian product G1 × G2. Since we have that Qi+j = Qi × Qj, the following lemma follows, which was also noted
in [2, Lemma 4(b)]

Lemma 4. If Qi and Qj can be decomposed into paths of length k then so can Qi+j.

Finally, we will also need the following folklore result; for a proof see e.g. [1].

Lemma 5. Let n be even. Then Qn can be decomposed into edge-disjoint Hamiltonian cycles.

Given any r , we want to show that P2r | Qn, for all odd n ≥ r . The preceding two lemmas imply that, for each r , we only
need to consider a finite number of n. The same result is shown in [2, Proposition 3].

Corollary 6. If P2r | Q2r+m for all odd 1 ≤ m ≤ r + 1, then P2r | Qn for all odd n ≥ r.

Proof. Suppose first that r is odd. By Lemma5wehave thatQr+1 can be decomposed intoHamiltonian cycles, of length 2r+1,
and so it can be decomposed into paths of length 2r . We proceed by strong induction on n. The cases 2r

+1 ≤ n ≤ 2r
+ r +1

are assumed. Given n ≥ 2r
+ r + 2 we have that n − (r + 1) ≥ 2r

+ 1 and so by the induction hypothesis P2r | Qn−(r+1).
Hence, since P2r | Qr+1, by Lemma 4 P2r | Qn. The case where r is even is similar. �

A simpleway to decomposeQn into paths,whichwill informourmethod, is as follows. SinceQn is n-regular and bipartite,
it is a simple application of Hall’s theorem that we can decompose the edge set into n perfect matchings. Let X be the set of
even vertices in Qn and Y be the odd. If we take some perfect matchings M1, M2, . . . , Mk, then we can cover the edges in
these matchings by |X | walks of length k, one starting at each vertex in X . For example, if the edge (x1, yi1) is in M1 and the
edge (yi1 , xi2) is in M2 and so on, then we have that the walk starting at x1 is {(x1, yi1), (yi1 , xi2), . . . , (xik−1 , yik)} if k is odd,
and {(x1, yi1), (yi1 , xi2), . . . , (yik−1 , xik)} if k is even. We will use the notation W(M1, M2, . . . , Mk, X) to denote the set of
walks formed by concatenatingM1 toMk in that order, starting at X , and similarly if we start at Y . A pictorial representation
of this process is presented in Fig. 1.

Therefore, since aswenoted beforewe can decomposeQn into nperfectmatchings,we can use thismethod to decompose
Qn into walks of length k, for any k | n, by splitting the matchings into sets of size k and concatenating them as above. If we
are careful with the matchings we choose and the order we concatenate them in, we can ensure that these walks are paths.
For example, if we take, for 1 ≤ i ≤ n, the matchings

Mi = {((q1, q2, . . . , qi, . . . , qn), (q1, q2, . . . , qi + 1, . . . , qn)) : (q1, q2, . . . , qi, . . . , qn) ∈ X}, (2.1)
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