Note

Decomposing the cube into paths

Joshua Erde

DPMMS, University of Cambridge, United Kingdom

ARTICLE INFO

Article history:

Received 28 October 2013
Received in revised form 25 July 2014
Accepted 26 July 2014
Available online 25 August 2014

Keywords:

Graph decomposition
Hypercube

Abstract

We consider the question of when the n-dimensional hypercube can be decomposed into paths of length k. For odd n it is necessary that k divides $n 2^{n-1}$ and that $k \leq n$. Anick and Ramras (2013) conjectured that these two conditions are also sufficient for all odd n and prove that this is true for odd $n \leq 2^{32}$. In this note we prove the conjecture.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercube \mathcal{Q}_{n} is a graph with vertex set $V=\{0,1\}^{n}$ and edge set $E=\left\{(x, y):\|x-y\|_{1}=1\right\}$. Problems of decomposing the hypercube into edge-disjoint copies of smaller graphs have been considered by several authors, such as decomposing Q_{n} into trees [4,7], into Hamiltonian cycles and matchings [1] or into stars, $K_{1, r}$ for $r<n$ [3].

Mollard and Ramras [6], motivated by applications in parallel processing (see [5]), considered the problem of decomposing the hypercube into paths. A path of length k is a sequence of distinct vertices $x_{1}, x_{2}, \ldots, x_{k+1}$ such that for all $1 \leq i \leq k\left(x_{i}, x_{i+1}\right) \in E\left(Q_{n}\right)$. Mollard and Ramras [6] noted that, if n is odd, and we wish to decompose Q_{n} into paths of length k, there are two simple necessary conditions that k must satisfy. Firstly, since $\left|E\left(Q_{n}\right)\right|=n 2^{n-1}$ we must have that k divides $n 2^{n-1}$, which we write as $k \mid n 2^{n-1}$. Secondly, since Q_{n} is n-regular, and n is odd, each vertex must be the endpoint of at least one of the paths, and so we must have at least 2^{n-1} paths (since each path has 2 endpoints). Therefore, we must also have that $k \leq n$. They were able to prove partial results towards a converse of this. For example they showed that if k and n are odd, and $k \mid n$, then \mathcal{Q}_{n} can be decomposed into paths of length k, and if also $k<n$, then \mathcal{Q}_{n} can be decomposed into paths of length $2 k$. They also showed that Q_{n} can be decomposed into paths of length 4 for all $n \geq 4$. Anick and Ramras [2] conjectured:

Conjecture 1 ([2]). Let n be odd and k such that $k \mid n 2^{n-1}$ and $k \leq n$. Then Q_{n} can be decomposed into paths of length k.
They showed that the conjecture holds for $n<2^{32}$, a remarkably large bound. The main result of this note is to show that the conjecture holds for all n.

Theorem 2. Let n be odd and k such that $k \mid n 2^{n-1}$ and $k \leq n$. Then Q_{n} can be decomposed into paths of length k.
In the next section we provide a proof of Theorem 2 and in the final section we briefly discuss what can be said about decomposing Q_{n} into paths of length k for even n.

[^0]

Fig. 1. Concatenation of 3 matchings, starting at X.

2. Proof of Theorem 2

A walk of length k is a sequence of vertices $x_{1}, x_{2}, \ldots, x_{k+1}$, not necessarily distinct, such that for all $1 \leq i \leq k\left(x_{i}, x_{i+1}\right) \in$ $E\left(Q_{n}\right)$. We denote by even vertices the set of vertices $\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in \mathcal{Q}_{n}$ such that $\left|\left\{i: q_{i}=1\right\}\right|$ is even, and similarly odd vertices. It is apparent that Q_{n} is a bipartite graph, with the classes being the even and the odd vertices.

We will require a few lemmas for our proof. First, we will need the following lemma, which is a simple corollary of [2, Proposition 1].

Lemma 3. For any n let t be such that t is odd and $t \mid n$. If $\mathcal{Q}_{\frac{n}{t}}$ can be decomposed into paths of length s then \mathcal{Q}_{n} can be decomposed into paths of length t s.

It follows from Lemma 3 that we only need to consider the case of decomposing Q_{n} into paths of length 2^{r} for $2^{r} \leq n$. Indeed, given some odd n, and $k \leq n$ such that $k \mid n$, we have that $k=t 2^{r}$ for some odd $t \mid n$. So, by Lemma 3, if we can decompose $\mathcal{Q}_{\frac{n}{t}}$ into paths of length 2^{r}, then we can decompose \mathcal{Q}_{n} into paths of length k. Note that $2^{r} \leq n / t$. We also note that for any graphs H, G_{1} and G_{2}, it is a simple observation that, if G_{1} and G_{2} can be decomposed into copies of H, then so can the cartesian product $G_{1} \times G_{2}$. Since we have that $Q_{i+j}=\mathcal{Q}_{i} \times \mathcal{Q}_{j}$, the following lemma follows, which was also noted in [2, Lemma 4(b)]

Lemma 4. If \mathcal{Q}_{i} and \mathcal{Q}_{j} can be decomposed into paths of length k then so can \mathcal{Q}_{i+j}.
Finally, we will also need the following folklore result; for a proof see e.g. [1].
Lemma 5. Let n be even. Then \mathcal{Q}_{n} can be decomposed into edge-disjoint Hamiltonian cycles.
Given any r, we want to show that $P_{2^{r}} \mid Q_{n}$, for all odd $n \geq r$. The preceding two lemmas imply that, for each r, we only need to consider a finite number of n. The same result is shown in [2, Proposition 3].

Corollary 6. If $P_{2^{r}} \mid Q_{2^{r}+m}$ for all odd $1 \leq m \leq r+1$, then $P_{2^{r}} \mid Q_{n}$ for all odd $n \geq r$.
Proof. Suppose first that r is odd. By Lemma 5 we have that Q_{r+1} can be decomposed into Hamiltonian cycles, of length 2^{r+1}, and so it can be decomposed into paths of length 2^{r}. We proceed by strong induction on n. The cases $2^{r}+1 \leq n \leq 2^{r}+r+1$ are assumed. Given $n \geq 2^{r}+r+2$ we have that $n-(r+1) \geq 2^{r}+1$ and so by the induction hypothesis $P_{2^{r}} \mid \mathcal{Q}_{n-(r+1)}$. Hence, since $P_{2^{r}} \mid \mathcal{Q}_{r+1}$, by Lemma $4 P_{2^{r}} \mid Q_{n}$. The case where r is even is similar.

A simple way to decompose Q_{n} into paths, which will inform our method, is as follows. Since Q_{n} is n-regular and bipartite, it is a simple application of Hall's theorem that we can decompose the edge set into n perfect matchings. Let X be the set of even vertices in Q_{n} and Y be the odd. If we take some perfect matchings $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{k}$, then we can cover the edges in these matchings by $|X|$ walks of length k, one starting at each vertex in X. For example, if the edge $\left(x_{1}, y_{i_{1}}\right)$ is in \mathcal{M}_{1} and the edge $\left(y_{i_{1}}, x_{i_{2}}\right)$ is in \mathcal{M}_{2} and so on, then we have that the walk starting at x_{1} is $\left\{\left(x_{1}, y_{i_{1}}\right),\left(y_{i_{1}}, x_{i_{2}}\right), \ldots,\left(x_{i_{k-1}}, y_{i_{k}}\right)\right\}$ if k is odd, and $\left\{\left(x_{1}, y_{i_{1}}\right),\left(y_{i_{1}}, x_{i_{2}}\right), \ldots,\left(y_{i_{k-1}}, x_{i_{k}}\right)\right\}$ if k is even. We will use the notation $\mathcal{W}\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{k}, X\right)$ to denote the set of walks formed by concatenating \mathcal{M}_{1} to \mathcal{M}_{k} in that order, starting at X, and similarly if we start at Y. A pictorial representation of this process is presented in Fig. 1.

Therefore, since as we noted before we can decompose Q_{n} into n perfect matchings, we can use this method to decompose Q_{n} into walks of length k, for any $k \mid n$, by splitting the matchings into sets of size k and concatenating them as above. If we are careful with the matchings we choose and the order we concatenate them in, we can ensure that these walks are paths. For example, if we take, for $1 \leq i \leq n$, the matchings

$$
\begin{equation*}
\mathcal{M}_{i}=\left\{\left(\left(q_{1}, q_{2}, \ldots, q_{i}, \ldots, q_{n}\right),\left(q_{1}, q_{2}, \ldots, q_{i}+1, \ldots, q_{n}\right)\right):\left(q_{1}, q_{2}, \ldots, q_{i}, \ldots, q_{n}\right) \in X\right\} \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/4647425

Download Persian Version:

https://daneshyari.com/article/4647425

Daneshyari.com

[^0]: E-mail address: joshua.erde@cantab.net.
 http://dx.doi.org/10.1016/j.disc.2014.07.019
 0012-365X/© 2014 Elsevier B.V. All rights reserved.

