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a b s t r a c t

A plane graph is called entirely k-colorable if for each x ∈ V (G) ∪ E(G) ∪ F(G), we can
use k colors to assign each element x a color such that any two elements that are adjacent
or incident receive distinct colors. In this paper, we prove that if G is a plane graph with
∆ = 11, thenG is entirely (∆+2)-colorable, which provides a positive answer to a problem
posed by Borodin (Problem 5.2 in Borodin (2013)).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notations and
terminology in [1].

A plane graph is a particular drawing of a planar graph on the Euclidean plane. For a plane graph G, we use V (G), E(G),
F(G), ∆(G) and δ(G) to denote, respectively, its vertex set, edge set, face set, maximum degree andminimum degree.

For f ∈ F(G), we use B(f ) to denote the boundary walk of f and write f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices
of B(f ) in the clockwise order. A k (k− or k+)-vertex is a vertex of degree (at most or at least) k. A k (k− or k+)-face is defined
similarly.

An entire coloring of a plane graph G is a coloring of the faces, vertices, and edges of G, which we call the elements of G,
so that all incident or adjacent elements receive distinct colors. We use χvef(G) to denote the entire chromatic number of a
plane graph G.

In 1972, Kronk and Mitchem [4] conjectured that any plane graph of maximum degree ∆ is entirely (∆ + 4)-colorable
and proved this conjecture for ∆ = 3 [5]. In [6], it is proved that the conjecture is true if ∆ ≥ 6. More recently, Wang
and Zhu [9] completely settled the conjecture. In [9], the authors asked that whether every simple plane graph G ≠ K4 is
entirely (∆+3)-colorable. Wang, Mao andMiao [8] proved that every plane graph with maximum degree ∆ ≥ 8 is entirely
(∆ + 3)-colorable. It is obvious that χvef(G) ≥ ∆ + 2 for every plane graph. Borodin [2] proved that every plane graph G
with ∆ ≥ 12 satisfies χvef(G) = ∆ + 2.

In this paper, we consider a problem posed by Borodin in [3], which states that: Is it true that χvef(G) ≤ 13 holds for
every plane graph G with ∆ = 11?

Actually, we prove the following theorem and provide a positive answer to the above problem.
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Theorem 1.1. If G is a plane graph with ∆ = 11, then χvef(G) ≤ ∆ + 2.

For convenience,we introduce the following terminology. A partial (entire) coloring is an entire coloring, except that some
elements may not be colored. For any element x of G, we use S(x) to denote the set of incident/adjacent elements of x.

Let v be a vertex ofGwithN(v) = {v1, v2, . . . , vd(v)} in clockwise order. The incident face bounded by vkvvk+1 is denoted
by fk for 0 ≤ k ≤ d(v)− 1, where k+ 1 is taken module d(v). If there exist vi, vj ∈ N(v) such that min{d(vi), d(vj)} ≥ 3 and
d(vk) = 2 for each i+1 ≤ k ≤ j−1, then we say that {vi, . . . , vj} is a (vi, vj)-segment of v (or v contains a (vi, vj)-segment),
denoted by seg(vi, vj). It is needed to point out that seg(vi, vj) ≠ seg(vj, vi). The number of 2-vertices of seg(vi, vj) is called
the span of seg(vi, vj), denoted by |seg(vi, vj)|. Two segments seg(vi, vj) and seg(vk, vl) are called adjacent if vj = vk or
vi = vl.

Let v be a vertex of Gwith N(v) = {v1, v2, . . . , vd(v)} in clockwise order and fk = vkvvk+1 for some 1 ≤ k ≤ d(v), where
k is taken module d(v), be an incident face of v. If d(vk) ≥ 3 and d(vk+1) ≥ 3, then fk is called a non-segment face of v.

Let v be a vertex of G, we use ni(v), ni+(v) and ni−(v) to denote the number of adjacent i, i+ and i−-vertices of v.
Analogously, the number of incident i, i+ and i−-vertices of a face f is denoted by ni(f ), ni+(f ) and ni−(f ).

2. Structures of counterexample

In this section, we always assume that G is a counterexample to Theorem 1.1 with |V | + |E| as small as possible. In the
following of this section, we present some structure properties of G.

Lemma 2.1. δ(G) ≥ 2.

Proof. To the contrary, suppose v is a 1-vertex of G and u is the neighbor of v. By the choice of G, G−v has an entire coloring
φ using 13 colors. Since |S(v)| ≤ 12, we can easily extend φ to the whole graph G. A contradiction.

Lemma 2.2. If v is a 2-vertex of G and N(v) = {u, w}, then d(u) ≥ 10 and d(w) ≥ 10.

Proof. Without loss of generality, we assume that d(u) ≤ 9. We contract uv to obtain a new graph G′. By the choice of G, G′

admits an entire coloring φ. It is clear that φ is a partial coloring of Gwith v and uv uncolored. Since d(v) = 2 and d(u) ≤ 9,
S(uv) ≤ 13 and S(v) ≤ 6. We can properly color uv and v in sequence to extend φ to the whole graph.

Lemma 2.3. Suppose v is a 2-vertex of G and v is adjacent to a 10-vertex u. Let f1 and f2 be the two faces bounded by uv. Then
d(f1) ≥ 5 and d(f2) ≥ 5. Moreover, if d(fi) = 5, then n4+(fi) = 4 for i ∈ {1, 2}.

Proof. Let v be such a 2-vertex and let N(v) = {u, w} and d(u) = 10. Without loss of generality, we assume that d(f1) ≤ 4.
We contract uv to obtain G′. By the minimality of G, G′ admits an entire coloring φ using 13 colors. φ is a partial coloring
of G with v and uv uncolored. First we erase the color of f1. Notice that |S(uv)| ≤ 14, |S(f1)| ≤ 12 and |S(v)| ≤ 6, we can
properly color uv, f1 and v in sequence to obtain an entire coloring of G.

Now we consider the latter part of the lemma. Assume that d(f1) = 5 but n4+(f1) ≤ 3. Let x be the other 3−-vertex
incident with f1.

The proof is quite similar to that of the previous. We contract uv to obtain G′. By the minimality of G, G′ admits an entire
coloring φ using 13 colors. φ is a partial coloring of G with v and uv uncolored. First we erase the color of f1 and x. Notice
that |S(uv)| ≤ 14, |S(f1)| ≤ 14, |S(x)| ≤ 9 and |S(v)| ≤ 6, we can properly color uv, f1, x and v in sequence to obtain an
entire coloring of G.

Lemma 2.4. Suppose v is a 2-vertex of G and v is adjacent to a 11-vertex u. Let f1 and f2 be the two faces bounded by uv with
d(f1) ≤ d(f2). If 3 ≤ d(f1) ≤ 4 or d(f1) = 5 with n4+(fi) ≤ 3, then d(f2) ≥ 6.

Proof. Let v be a 2-vertex with N(v) = {u, w} and d(u) = 11. To the contrary, we assume that d(f2) ≤ 5. We contract uv
to obtain G′. By the minimality of G, G′ admits an entire coloring φ using 13 colors. φ is a partial coloring of G with v and
uv uncolored. First we erase the color of f1, f2. Moreover, if d(f1) = 5 with n4+(fi) ≤ 3, we additionally erase the color of
the other 3−-vertex of f1, named x. Notice that |S(uv)| ≤ 15, |S(f1)| ≤ 14, |S(f2)| ≤ 14, |S(x)| ≤ 9 and |S(v)| ≤ 6, we can
properly color uv, f2f1, x and v in sequence to obtain an entire coloring of G.

Lemma 2.5. Let f = [· · · wuv · · ·] be a k-face of G with 3 ≤ k ≤ 4. If d(u) = 3, then d(v) ≥ 10 and d(w) ≥ 10. If d(u) ≥ 4,
then d(u) + d(v) ≥ 12.

Proof. First we assume that d(u) = 3 and d(v) ≤ 9. By the choice of G, G − uv admits an entire coloring φ. It is obvious
that φ is a partial coloring of G with f and uv uncolored. We erase the color of v. Since d(v) ≤ 9, |S(uv)| ≤ 14. Notice that
|S(u)| ≤ 9 and |S(f )| ≤ 12, we can properly color uv, f and u in sequence to obtain an entire coloring of G.

Now, we consider the latter part of the lemma. Assume that d(u) ≥ 4 but d(u) + d(v) ≤ 11. By the choice of G, G − uv
admits an entire coloringφ with 13 colors. Noticeφ is a partial coloring ofGwith f and uv uncolored. Since d(u)+d(v) ≤ 11,
|S(uv)| ≤ 13. We can choose a proper color for uv, then properly color f to extend φ to the whole graph.

By Lemmas 2.2 and 2.5, we have Lemma 2.6.
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