Contents lists available at ScienceDirect # **Discrete Mathematics** journal homepage: www.elsevier.com/locate/disc # Entire coloring of plane graph with maximum degree eleven* Wei Dong a,b,*, Wensong Lin a - ^a Department of Mathematics, Southeast University, Nanjing, 211189, China - ^b School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing, 211171, China #### ARTICLE INFO Article history: Received 19 September 2013 Received in revised form 26 July 2014 Accepted 30 July 2014 Available online 25 August 2014 Keywords: Entire coloring Plane graph Maximum degree #### ABSTRACT A plane graph is called entirely k-colorable if for each $x \in V(G) \cup E(G) \cup F(G)$, we can use k colors to assign each element x a color such that any two elements that are adjacent or incident receive distinct colors. In this paper, we prove that if G is a plane graph with $\Delta = 11$, then G is entirely ($\Delta + 2$)-colorable, which provides a positive answer to a problem posed by Borodin (Problem 5.2 in Borodin (2013)). © 2014 Elsevier B.V. All rights reserved. #### 1. Introduction Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notations and terminology in [1]. A plane graph is a particular drawing of a planar graph on the Euclidean plane. For a plane graph G, we use V(G), E(G), F(G), $\Delta(G)$ and $\delta(G)$ to denote, respectively, its *vertex set*, *edge set*, *face set*, *maximum degree* and *minimum degree*. For $f \in F(G)$, we use B(f) to denote the boundary walk of f and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the vertices of B(f) in the clockwise order. A k (k^- or k^+)-vertex is a vertex of degree (at most or at least) k. A k (k^- or k^+)-face is defined similarly. An *entire coloring* of a plane graph G is a coloring of the faces, vertices, and edges of G, which we call the elements of G, so that all incident or adjacent elements receive distinct colors. We use $\chi_{\text{vef}}(G)$ to denote the entire chromatic number of a plane graph G. In 1972, Kronk and Mitchem [4] conjectured that any plane graph of maximum degree Δ is entirely (Δ + 4)-colorable and proved this conjecture for Δ = 3 [5]. In [6], it is proved that the conjecture is true if Δ \geq 6. More recently, Wang and Zhu [9] completely settled the conjecture. In [9], the authors asked that whether every simple plane graph $G \neq K_4$ is entirely (Δ + 3)-colorable. Wang, Mao and Miao [8] proved that every plane graph with maximum degree Δ \geq 8 is entirely (Δ + 3)-colorable. It is obvious that $\chi_{\text{vef}}(G) \geq \Delta + 2$ for every plane graph. Borodin [2] proved that every plane graph G with Δ \geq 12 satisfies $\chi_{\text{vef}}(G) = \Delta + 2$. In this paper, we consider a problem posed by Borodin in [3], which states that: Is it true that $\chi_{\text{vef}}(G) \leq 13$ holds for every plane graph G with $\Delta = 11$? Actually, we prove the following theorem and provide a positive answer to the above problem. E-mail addresses: weidong@njxzc.edu.cn (W. Dong), wslin@seu.edu.cn (W. Lin). [☆] Supported by China Postdoctoral Science Foundation (NO. 2013M531243) and Natural Science Foundation of Jiangsu Province of China (NO. BK20140089). ^{*} Corresponding author. **Theorem 1.1.** If G is a plane graph with $\Delta = 11$, then $\chi_{vef}(G) < \Delta + 2$. For convenience, we introduce the following terminology. A partial (entire) coloring is an entire coloring, except that some elements may not be colored. For any element x of G, we use S(x) to denote the set of incident/adjacent elements of x. Let v be a vertex of G with $N(v) = \{v_1, v_2, \ldots, v_{d(v)}\}$ in clockwise order. The incident face bounded by $v_k v v_{k+1}$ is denoted by f_k for $0 \le k \le d(v) - 1$, where k+1 is taken module d(v). If there exist $v_i, v_j \in N(v)$ such that $\min\{d(v_i), d(v_j)\} \ge 3$ and $d(v_k) = 2$ for each $i+1 \le k \le j-1$, then we say that $\{v_i, \ldots, v_j\}$ is a (v_i, v_j) -segment of v (or v contains a (v_i, v_j) -segment), denoted by $seg(v_i, v_j)$. It is needed to point out that $seg(v_i, v_j) \ne seg(v_j, v_i)$. The number of 2-vertices of $seg(v_i, v_j)$ is called the span of $seg(v_i, v_j)$, denoted by $|seg(v_i, v_j)|$. Two segments $seg(v_i, v_j)$ and $seg(v_k, v_l)$ are called adjacent if $v_j = v_k$ or $v_i = v_l$. Let v be a vertex of G with $N(v) = \{v_1, v_2, \dots, v_{d(v)}\}$ in clockwise order and $f_k = v_k v v_{k+1}$ for some $1 \le k \le d(v)$, where k is taken module d(v), be an incident face of v. If $d(v_k) \ge 3$ and $d(v_{k+1}) \ge 3$, then f_k is called a *non-segment face* of v. Let v be a vertex of G, we use $n_i(v)$, $n_{i^+}(v)$ and $n_{i^-}(v)$ to denote the number of adjacent i, i^+ and i^- -vertices of v. Analogously, the number of incident i, i^+ and i^- -vertices of a face f is denoted by $n_i(f)$, $n_{i^+}(f)$ and $n_{i^-}(f)$. ### 2. Structures of counterexample In this section, we always assume that G is a counterexample to Theorem 1.1 with |V| + |E| as small as possible. In the following of this section, we present some structure properties of G. **Lemma 2.1.** $\delta(G) \geq 2$. **Proof.** To the contrary, suppose v is a 1-vertex of G and u is the neighbor of v. By the choice of G, G-v has an entire coloring ϕ using 13 colors. Since |S(v)| < 12, we can easily extend ϕ to the whole graph G. A contradiction. **Lemma 2.2.** If v is a 2-vertex of G and $N(v) = \{u, w\}$, then $d(u) \ge 10$ and $d(w) \ge 10$. **Proof.** Without loss of generality, we assume that $d(u) \le 9$. We contract uv to obtain a new graph G'. By the choice of G, G' admits an entire coloring ϕ . It is clear that ϕ is a partial coloring of G with v and uv uncolored. Since d(v) = 2 and $d(u) \le 9$, $S(uv) \le 13$ and $S(v) \le 6$. We can properly color uv and v in sequence to extend ϕ to the whole graph. **Lemma 2.3.** Suppose v is a 2-vertex of G and v is adjacent to a 10-vertex u. Let f_1 and f_2 be the two faces bounded by uv. Then $d(f_1) \ge 5$ and $d(f_2) \ge 5$. Moreover, if $d(f_i) = 5$, then $n_{4^+}(f_i) = 4$ for $i \in \{1, 2\}$. **Proof.** Let v be such a 2-vertex and let $N(v) = \{u, w\}$ and d(u) = 10. Without loss of generality, we assume that $d(f_1) \le 4$. We contract uv to obtain G'. By the minimality of G, G' admits an entire coloring ϕ using 13 colors. ϕ is a partial coloring of G with v and uv uncolored. First we erase the color of f_1 . Notice that $|S(uv)| \le 14$, $|S(f_1)| \le 12$ and $|S(v)| \le 6$, we can properly color uv, f_1 and v in sequence to obtain an entire coloring of G. Now we consider the latter part of the lemma. Assume that $d(f_1) = 5$ but $n_{4^+}(f_1) \le 3$. Let x be the other 3⁻-vertex incident with f_1 . The proof is quite similar to that of the previous. We contract uv to obtain G'. By the minimality of G, G' admits an entire coloring ϕ using 13 colors. ϕ is a partial coloring of G with v and uv uncolored. First we erase the color of f_1 and x. Notice that $|S(uv)| \leq 14$, $|S(f_1)| \leq 14$, $|S(x)| \leq 9$ and $|S(v)| \leq 6$, we can properly color uv, f_1 , x and v in sequence to obtain an entire coloring of G. **Lemma 2.4.** Suppose v is a 2-vertex of G and v is adjacent to a 11-vertex u. Let f_1 and f_2 be the two faces bounded by uv with $d(f_1) \le d(f_2)$. If $3 \le d(f_1) \le 4$ or $d(f_1) = 5$ with $n_{4^+}(f_1) \le 3$, then $d(f_2) \ge 6$. **Proof.** Let v be a 2-vertex with $N(v) = \{u, w\}$ and d(u) = 11. To the contrary, we assume that $d(f_2) \le 5$. We contract uv to obtain G'. By the minimality of G, G' admits an entire coloring ϕ using 13 colors. ϕ is a partial coloring of G with v and uv uncolored. First we erase the color of f_1 , f_2 . Moreover, if $d(f_1) = 5$ with $n_{4^+}(f_i) \le 3$, we additionally erase the color of the other 3⁻-vertex of f_1 , named x. Notice that $|S(uv)| \le 15$, $|S(f_1)| \le 14$, $|S(f_2)| \le 14$, $|S(x)| \le 9$ and $|S(v)| \le 6$, we can properly color uv, f_2f_1 , x and v in sequence to obtain an entire coloring of G. **Lemma 2.5.** Let $f = [\cdots wuv \cdots]$ be a k-face of G with $3 \le k \le 4$. If d(u) = 3, then $d(v) \ge 10$ and $d(w) \ge 10$. If $d(u) \ge 4$, then $d(u) + d(v) \ge 12$. **Proof.** First we assume that d(u) = 3 and $d(v) \le 9$. By the choice of G, G - uv admits an entire coloring ϕ . It is obvious that ϕ is a partial coloring of G with f and uv uncolored. We erase the color of v. Since $d(v) \le 9$, $|S(uv)| \le 14$. Notice that $|S(u)| \le 9$ and $|S(f)| \le 12$, we can properly color uv, f and u in sequence to obtain an entire coloring of G. Now, we consider the latter part of the lemma. Assume that $d(u) \ge 4$ but $d(u) + d(v) \le 11$. By the choice of G, G - uv admits an entire coloring ϕ with 13 colors. Notice ϕ is a partial coloring of G with G and G uv uncolored. Since G uv admits an entire coloring G with G and G uv uncolored. Since G uv, then properly color G to extend G to the whole graph. By Lemmas 2.2 and 2.5, we have Lemma 2.6. # Download English Version: # https://daneshyari.com/en/article/4647426 Download Persian Version: https://daneshyari.com/article/4647426 <u>Daneshyari.com</u>