Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Nowhere-zero 3-flows of claw-free graphs

Jianqing Ma^{a,b}, Xiangwen Li^{a,*}

^a Department of Mathematics, Huazhong Normal University, Wuhan 430079, China ^b College of Science, Wuhan University of Science and Technology, Wuhan 430065, China

ARTICLE INFO

Article history: Received 23 August 2013 Received in revised form 25 July 2014 Accepted 1 August 2014 Available online 25 August 2014

Keywords: Nowhere-zero 3-flow Claw-free Z₃-connectivity

ABSTRACT

Let *A* denote an abelian group and *G* be a graph. If a graph G^* is obtained by repeatedly contracting nontrivial *A*-connected subgraphs of *G* until no such a subgraph left, we say *G* can be *A*-reduced to G^* . A graph is claw-free if it has no induced subgraph $K_{1,3}$. Let $N_{1,1,0}$ denote the graph obtained from a triangle by adding two edges at two distinct vertices of the triangle, respectively. In this paper, we prove that if *G* is a simple 2-connected {claw, $N_{1,1,0}$ -free graph, then *G* does not admit nowhere-zero 3-flow if and only if *G* can be Z_3 -reduced to two families of well characterized graphs or *G* is one of the five specified graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite, loopless, and may have multiple edges. We follow the notation and terminology in [1] except otherwise stated.

Let *D* be an orientation of a graph *G*. If an edge $e = uv \in E(G)$ is directed from a vertex *u* to a vertex *v*, then *u* is a *tail* of *e* and *v* is a *head* of *e*. For each vertex $v \in V(G)$, let $E^+(v)$ be the set of all directed edges with tails at *v* and $E^-(v)$ be the set of all directed edges with heads at *v*. Let *A* be an abelian group with identity 0, and let $A^* = A - \{0\}$. For every mapping $f : E(G) \to A$, the *boundary* of *f* is a function $\partial f : V(G) \to A$ defined by, for each $v \in V(G)$,

$$\partial f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e),$$

where " \sum " refers to the addition in *A*. A function *f* is an *A*-flow in *G* if $\partial f(v) = 0$ for each vertex $v \in V(G)$. A function *f* is a nowhere-zero *A*-flow if for each edge $e, f(e) \in A^*$. A graph *G* is *A*-connected if *G* has an orientation *D* such that for every function $b : V(G) \to A$ with $\sum_{v \in V(G)} b(v) = 0$, there exists a nowhere-zero *A*-flow *f* such that $\partial f = b$. For an integer $k \ge 2$, a nowhere-zero *k*-flow of *G* is an integer-valued function *f* on E(G) such that 0 < |f(e)| < k for each $e \in E(G)$, and for each vertex $v \in V(G)$, $\partial f(v) = 0$. It is well known that *G* has a nowhere-zero Z_k -flow if and only if *G* has a nowhere-zero *k*-flow. As noted in [9], the existence of a nowhere-zero *k*-flow of a graph *G* is independent of the choice of the orientation *D*.

The concept of integer flow problems was introduced by Tutte in [20]. Group connectivity was introduced by Jaeger et al. in [9] as a generalization of nowhere-zero flows. The following conjectures are due to Tutte [20] and Jaeger et al. [9], respectively.

Conjecture 1.1. Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Conjecture 1.2. Every 5-edge-connected graph is Z₃-connected.

http://dx.doi.org/10.1016/j.disc.2014.08.001 0012-365X/© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: xwli68@mail.ccnu.edu.cn, xwli2808@yahoo.com (X. Li).

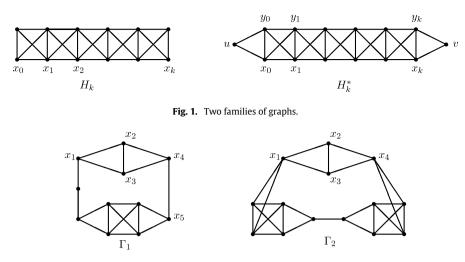


Fig. 2. Two graphs in *G*.

Many authors have devoted themselves to the study of nowhere-zero flows. Some authors use degree condition to guarantee the existence of nowhere-zero 3-flows (see [5,6,24] and so on). Some authors investigated nowhere-zero flows on products of graphs (see [8,7,17] and so on). Some investigate nowhere-zero 3-flows in Cayley graphs (see [16,23] and others). Thomassen [19] confirmed the weak 3-flow conjecture by proving that every 8-edge-connected graph is Z_3 -connected, which was recently improved to 6-edge-connected graph by Lovász et al. [14]. However, Conjectures 1.1 and 1.2 are still open. On the other hand, Xu [22] got the following observation.

Observation 1.3. Every 5-edge-connected graph is Z_3 -connected if and only if every 5-edge-connected $K_{1,3}$ -free graph is Z_3 -connected.

Proof. It is obvious that if every 5-edge-connected graph is Z_3 -connected, then every 5-edge-connected $K_{1,3}$ -free graph is Z_3 -connected. Conversely, assume that every 5-edge-connected $K_{1,3}$ -free graph is Z_3 -connected. Let G be a 5-edge-connected graph. Define G' be the graph obtained from G by replacing each vertex u of G with a complete graph $K_{\Delta(G)}$ such that no two neighbors of u are adjacent to the same vertex of the complete graph $K_{\Delta(G)}$. Since G is 5-edge-connected, $\Delta(G) \ge 5$. Thus, G' is 5-edge-connected $K_{1,3}$ -free graph. By assumption, G' is Z_3 -connected. By Proposition 3.2 and Corollary 3.5 of [11], G is Z_3 -connected.

Conjecture 1.2 implies Conjecture 1.1 by a result of Kochol [10] that reduces Conjecture 1.1 to a consideration of 5-edge-connected graphs. In the view of Observation 1.3 and the result of Lovász et al. [14], both two conjectures reduce to investigate the Z_3 -connectivity of 5-edge-connected $K_{1,3}$ -free graphs. Thus, we investigate nowhere-zero 3-flows of $K_{1,3}$ -free graphs in this paper. Before presenting our main result, we define some families of graphs.

For two disjoint graphs Γ_1 and Γ_2 , a 2-sum of Γ_1 and Γ_2 , denoted by $\Gamma_1 \oplus_2 \Gamma_2$, is the graph obtained from Γ_1 and Γ_2 by identifying one edge of Γ_1 with one edge of Γ_2 . For a positive integer k, define H_k as follows. When k = 1, $H_1 = K_4$; for $k \ge 2$, denote by H_k the 2-sum of H_{k-1} and K_4 by identifying an edge $e = x_1x_2$ of H_{k-1} and $e' = y_1y_2$ of K_4 , where $d_{H_{k-1}}(x_1) = d_{H_{k-1}}(x_2) = 3$. Define $\mathscr{H} = \{H_k | k = 2, 3, 4, \ldots\}$. Note that H_k contains exactly two pairs of adjacent vertices, each vertex of which is of degree 3. For $k \ge 1$, denote by H_k^* the graph obtained from H_k by adding two distinct vertices u and v, together with joining u to a pair of adjacent vertices of degree 3 in H_k and joining v to the other such pair of adjacent vertices in H_k . For $k \ge 1$, denote by H_k^* the graph obtained from H_k^* by deleting a vertex of degree 2 as depicted in Fig. 1.

Denote by K_n^- the graph obtained from a complete graph K_n by removing an edge. Define $\mathscr{A} = \{K_4^-, P_2\} \cup \{H_k^* : k = 1, 2, ...\}$. A vertex v of $H \in \mathscr{A}$ is a *distinguished vertex* if d(v) = 2 for $H \in \{K_4^-\} \cup \{H_k^* : k = 1, 2, ...\}$ or v is a vertex of P_2 . Note that each graph in \mathscr{A} has exactly two distinguished vertices. Let G be a 2-connected graph. An edge e of G is *essential* if G - e is not 2-connected. Define \mathscr{G} to be a family of graphs such that $G \in \mathscr{G}$ if and only if G is K_4 or G is a 2-connected graph such that

- (1) G contains an essential edge e;
- (2) each block of G e is a member of \mathscr{A} ;
- (3) the common vertex of two blocks B_1 and B_2 of G e is a distinguished vertex of B_1 and that of B_2 as well;
- (4) G e contains at least one block isomorphic to K_4^- (see Fig. 2).

An edge is *contracted* if its two ends are identified into a single vertex and deleting the resulting loop. Let H be a connected subgraph of G. Denote by G/H the graph obtained from G by contracting all the edges of H and deleting all the resulting loops. A graph G is *A*-reduced if no nontrivial subgraph of G is *A*-connected. We say that a graph G_0 is an *A*-reduction of G if G_0 is *A*-reduced and if G_0 can be obtained from G by contracting all maximally *A*-connected subgraphs of G.

Download English Version:

https://daneshyari.com/en/article/4647427

Download Persian Version:

https://daneshyari.com/article/4647427

Daneshyari.com