Discrete Mathematics 314 (2014) 1-5

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An evasion game on a graph @ CrossMark
John Haslegrave

School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK

ARTICLE INFO ABSTRACT

Article history: This paper introduces a pursuit and evasion game to be played on a connected graph. One
Received 9 December 2011 player moves invisibly around the graph, and the other player must guess his position.
Received in revised form 2 September 2013 At each time step the second player guesses a vertex, winning if it is the current location

Accepted 4 September 2013

Available online 8 October 2013 of the first player; if not the first player must move along an edge. It is shown that the

graphs on which the second player can guarantee to win are precisely the trees that do not
contain a particular forbidden subgraph, and best possible capture times on such graphs
are obtained.

Keywords:
Pursuit game
Evasion game
Tree

Cops and robbers
Graph searching

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Pursuit and evasion games on graphs have been widely studied. Perhaps the most significant is the Cops and Robbers
game, an instance of which is a graph G together with a fixed number of cops. The cops take up positions on vertices of G and
a robber then starts on any unoccupied vertex. The cops and the robber take turns: the robber chooses either to remain at
his current vertex or to move to any adjacent vertex, and then the cops simultaneously make moves of the same form. The
game is played with perfect information, so that at any time each of the players knows the location of all others. The cops
win if at any point one of them is at the same position as the robber. Early results on this game include those obtained by
Nowakowski and Winkler [5] and Aigner and Fromme [1]. An important open problem is Meyniel’s conjecture, published
by Frankl [4], that O(4/n) cops are enough to win on any n-vertex connected graph. More recently, several variations on the
game have been analysed by Clarke and Nowakowski (e.g. [3]).

In this paper we will consider a novel form of pursuit game, which bears some similarity to the Cops and Robbers game
but differs in that the movement of the pursuer (the cat) is not constrained by the edges of the graph, and also in that the
pursuer is disadvantaged by not knowing where the pursued (the mouse) is. This imperfect information will naturally lead
to a different emphasis: we ask whether there is a strategy for the cat that is successful against any possible strategy for the
mouse, and if so how long it takes. Another recent variation of a similar type is the Robber Locating game, introduced by
Seager [6] and further studied by Carraher, Choi, Delcourt, Erickson, and West [2], in which a cop probes a vertex at each
turn and is told the current distance to the robber.

Descriptively, we consider a connected graph to represent a network of mouse-holes connected by passageways. The
cat tries to catch the mouse by inserting a paw into one of the holes; if the cat has chosen the correct hole, then the
mouse is caught. After each unsuccessful attempt, the mouse moves from the hole he is currently in to any adjacent hole. A
rudimentary form of this problem, asking how the cat may win on a path, appeared on an internet puzzle forum [7].

We consider the active version, in which the mouse is required to move. The cat cannot guarantee to win without this
restriction (on at least two vertices), since the mouse would have at least two options at each time step, one of which

E-mail addresses: j.haslegrave@shef.ac.uk, j.haslegrave@cantab.net.

0012-365X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.disc.2013.09.004


http://dx.doi.org/10.1016/j.disc.2013.09.004
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2013.09.004&domain=pdf
mailto:j.haslegrave@shef.ac.uk
mailto:j.haslegrave@cantab.net
http://dx.doi.org/10.1016/j.disc.2013.09.004

2 J. Haslegrave / Discrete Mathematics 314 (2014) 1-5

avoids the cat. The active game is not feasible if there is only one vertex; clearly the cat can guarantee to catch the mouse
in two attempts (by choosing the same vertex twice) on the two-vertex connected graph, and cannot do better, so we shall
subsequently assume that our graph has at least three vertices.

2. Strategies for the mouse

We say that the mouse can survive to time t on a graph G if, for any sequence cy, ..., ¢; of vertices of G, there exists a
sequence my, ..., m, of vertices such that m; # ¢; for every i, and m;m;, is an edge of Gfor 1 < i < t — 1. We will refer
to the sequence (c;) as a cat sequence and (m;) as a mouse sequence that beats it. For each G we wish to determine whether
there is a t such that the mouse cannot survive to time t, and to determine the least such ¢ if so. Write m(G) for the least
such t, if it exists, and m(G) = oo otherwise, so that the mouse can survive to time t on G if and only if m(G) > t. The main
aim of this paper is to find a necessary and sufficient condition on G for m(G) to be finite, and a simple formula for m(G) if
G is such a graph.

Consider first the case where G is a cycle. In this case the mouse may always survive, because at every stage he has a
choice of two moves and at least one of them must be safe. Formally, given a cat sequence cy, ..., ¢; we may inductively
find a mouse sequence that beats it: take a mouse sequence my, ..., m;_q tobeatcy, ..., c;_1 and choose for m; a neighbour
of m;_; that is not equal to c;; this is possible since there are two neighbours to choose from.

Trivially, if H is a subgraph of G and the mouse can survive to time t on H then he can survive to time t on G by restricting
himself to making moves on H. Consequently the mouse can always survive if G contains a cycle. If m(G) < oo, then G must
be a tree.

Next we shall show that there are some trees on which the mouse can always survive. Let T* be the tree consisting of
three paths of length 3 with one common endpoint, with the jth path having vertices u;, vj, w; and x in that order.

Lemma 1. The mouse can survive to time t on T* for any t.

Proof. Given a cat sequence cq, ..., ¢; on T*, we shall construct a mouse sequence my, ..., m, that beats it. The key idea
is that at every odd time the mouse will be at x or at distance 2 from x, and it will be x whenever possible. We shall show
that when the mouse is forced away from x he may choose one of the three arms of T* to move down in such a way that he
will be able to return to x once it is safe to go back there (though he may need to know the cat sequence arbitrarily far in
advance in order to make the correct choice).

It suffices to prove the assertion for odd ¢, since when s is even we shall then have proved that the mouse can survive to
time s + 1, and consequently to time s. The argument does not depend on t being odd, but we construct even terms of the
mouse sequence from the neighbouring odd terms, so this will avoid having a separate case for the final term.

Set m; = x for every odd i such that ¢; # x. We must now choose a suitable value of m; for every odd i with ¢; = x. For each
such i, we must have m; = u;, m; = v;, or m; = wj; for some j. We divide such i into maximal subsequences of consecutive
odd terms of the cat sequence taking the value x. Within each such group we ensure that we consistently choose the same
value of j, since the mouse must go down one arm and may not return to x for the duration of this group. For each i and k, with

iodd, suchthatc¢; = ¢4 = -+ = Cizox = Xbut ¢;i_p # x(ori = 1) and c¢j1k+2 7# x (ori+ 2k = t) we choosej € {1, 2, 3}
such that ¢;_1 # wj and c¢;2k+1 7 wj. This is possible since at most two out of the three values are not permitted. Now
setm; = M4, = - -+ = Mok = vj. This choice ensures that the mouse can safely move from x to v; and back again when
required.

We have now defined m; for all odd i. If i is even and m;_; = m;;1 = x, then choose any j with ¢; # w; and set m; = wj.
Ifiis even and m;_; = m;y; = vj; for some j, then set m; = u; or m; = wj, whichever is not equal to ¢;. By our construction
of m; for odd i, the only other possibility for even i is that one of m;_; and mj;, is x but the other is v; for some j; in that
case either ¢;_1 = X # (i1 OI Ciy1 = X # Ci—1. Our choice of odd mouse values then implies that ¢; # w; and we can take
m; = wj. In every case we have chosen m; for even i to be adjacent to m;_; and m;1, and m; # ¢; for all i, as required. O

In fact T* is essentially the only example of a tree on which the mouse can survive: we shall show that the cat can always
catch the mouse on any tree that does not have T* as a subgraph. We refer to such trees as T*-free.

Before giving a strategy for the cat to win on any T*-free tree T with at least three vertices, we prove a lower bound on
m(T). We will show later that this bound is equal to m(T) when T is T*-free. The key idea in defining the lower bound is to
consider how often the cat must visit each vertex. _

Let T be a tree with at least three vertices, and let v be a vertex of T. Define d(v) as the number of neighbours of v that
are not leaves. Define a(v) for v € V(T) as follows:

2d(v) —2 ifd(v) > 2;
a(v) = {2 ifd(v) > 2 butd(v) < 2;
0 ifd(v) = d(v) = 1.

Let A(T) = >, a(v).1fd(v) = 1but El(v) = 0, then T is the two-vertex tree, which we have already excluded.

Lemma 2. If T is a tree with at least three vertices, then m(T) > A(T).



Download English Version:

https://daneshyari.com/en/article/4647475

Download Persian Version:

https://daneshyari.com/article/4647475

Daneshyari.com


https://daneshyari.com/en/article/4647475
https://daneshyari.com/article/4647475
https://daneshyari.com

