Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Odd-cycle systems with prescribed automorphism groups

G.J. Lovegrove

Department of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

ARTICLE INFO

ABSTRACT

Article history: Received 3 December 2012 Received in revised form 24 August 2013 Accepted 9 September 2013 Available online 10 October 2013 It is shown that for any finite group Γ , there exists a (2k + 1)-cycle system whose full automorphism group is isomorphic to Γ . Furthermore the minimal order of such a system is at most $(4k + 1)^{2\gamma \log_2 \gamma}$ if Γ is non-cyclic, and $(4k + 1)^{3\gamma}$ otherwise, where $\gamma = |\Gamma|$. © 2013 Elsevier B.V. All rights reserved.

Keywords: Automorphism group Cycle system

1. Introduction

In 1975, E. Mendelsohn [9,10] proved that for any finite group Γ there exists a Steiner triple system with full automorphism group isomorphic to Γ . The order of the Steiner triple system in Mendelsohn's construction is less than $\gamma^{c\gamma}$, where $\gamma = |\Gamma|$ and *c* is a certain positive constant. In this paper, it is proved that for any finite group, Γ , there exists an odd-cycle system whose full automorphism group is isomorphic to Γ , and moreover our construction yields a 2k+1-cycle system of order at most $(4k + 1)^{2\gamma \log_2 \gamma}$ if Γ is non-cyclic, and $(4k + 1)^{3\gamma}$ otherwise. This result was first presented in the author's doctoral thesis [8]. The thesis also contains the proof of the corresponding even cycles case, which has been accepted for publication [7]. More recently, a partial answer to the question of which abstract groups are the full automorphism groups of Hamiltonian cycle systems has been proved by Buratti, Rinaldi, and Traetta, [4].

An *m*-cycle system of order *n*, denoted by mCS(n), is a decomposition of the complete graph on *n* vertices, K_n , into cycles of length *m*. The vertices of K_n form the point set of the system. The order *n* is *m*-admissible if *n* is odd and $\frac{1}{2}n(n-1)$ is divisible by *m*. It has been shown [1,2,11] that an mCS(n) exists if and only if *n* is *m*-admissible and $n \ge m$. In this paper we shall be exclusively interested in cycles of odd length 2k + 1.

Following Mendelsohn, we shall use the result of Frucht [5] that for any given finite group Γ there exists a finite graph whose full automorphism group is isomorphic to Γ .

A subsystem of an mCS(n) is an mCS(n') with $n' \le n$, all of whose *m*-cycles are also cycles of the mCS(n). A proper subsystem of an mCS(n) is a subsystem of order n' with n' < n.

To construct an *m*CS system with the same automorphism group as a given graph, we define a recursive construction analogous to a |V|-dimensional cube, where V is the vertex set of the graph. Subsystems on selected 2-faces of this cube are modified to give a new system with the required automorphism group.

Section 2 describes the recursive construction and derives some important properties. Section 3 details the modified construction, and proves that the modified system has the required automorphism group. Section 4 gives constructions which provide the basic building blocks required. Section 5 draws these elements together to prove the main result.

Before we proceed, we state several short results which will be needed later. The proofs of these results are given in [7].

Lemma 1.1. If two subsystems of an mCS(n) have more than one point in common, then their common *m*-cycles also form a subsystem.

E-mail address: graham.lovegrove@virgin.net.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.09.006

Lemma 1.2. If the set of fixed points of any automorphism of an mCS(n) has size greater than one, then it forms a subsystem.

Lemma 1.3. A cyclic mCS(2m + 1) has no proper subsystems if m > 3.

2. Basic construction

Given an mCS(n), S, $(m, n \ge 3)$, and a non-zero positive integer v, we define an $mCS(n^v)$ on the n^v points (x_1, x_2, \ldots, x_v) , $x_i \in \{0, 1, \ldots, n-1\}$, which we denote by S^v . Before proceeding we define some notation. If $X = (x_1, x_2, \ldots, x_v)$ is any point of S^v we denote the value of the *i*th coordinate of X by $(X)_i$, i.e. $(X)_i = x_i$. We denote the set $\{0, 1, \ldots, n-1\}$ by the symbol [n].

We now define the cycles of S^v . The sequence $(X_1, X_2, \ldots, X_m), X_i \in S^v, j = 1, 2, \ldots, m$ is a cycle of S^v if

(i) for at least one $i \in \{1, 2, ..., v\}$, the sequence

 $((X_1)_i, (X_2)_i, ..., (X_m)_i)$ is a cycle of *S*, and

(ii) if $((X_1)_i, (X_2)_i, \ldots, (X_m)_i)$ is not a cycle of *S*, then

$$(X_1)_i = (X_2)_i = \cdots = (X_m)_i.$$

The cycles of S^v define an $mCS(n^v)$, because if X_1, X_2 are distinct points of S^v , the edge (X_1, X_2) is in a unique cycle of S^v because for each $i \in \{1, 2, ..., v\}$ such that $(X_1)_i \neq (X_2)_i$, the edge $((X_1)_i, (X_2)_i)$ is in a unique cycle of S.

The construction just given is valid for all such *S*. However, from this point on we shall assume that *S* is has trivial automorphism group, and also that it has no proper subsystems.

The system S^v has subsystems of order n^k for all $1 \le k < v$. We are particularly interested in the case k = 1, as we shall use these to derive the automorphism group for S^v . We characterise the subsystems of order n in the following lemma.

Lemma 2.1. If *S* has a trivial automorphism group and has no proper subsystems, then each mCS(*n*) subsystem of S^v consists a set of points in which the values of $k \ge 1$ distinct coordinates $i_1 < i_2 < \cdots < i_k$ are equal, and take all the values in [*n*], and the remainder of the coordinates are constant.

Proof. Let *T* be any mCS(n) subsystem of S^v , and let $(X_1, X_2, ..., X_m)$ be any cycle in *T*. There is an *i* such that the set of points $\{(X_j)_i : j = 1, 2, ..., m\}$ has more than one element. The cycles obtained by taking the *i*th coordinate of the cycles of *T* forms a subsystem of *S*, since every pair of points is represented in some cycle. However this must be the whole of *S*, since *S* has no proper subsystems. Therefore, if the *i*th coordinate is not constant in *T*, it takes all values 0, 1, ..., n - 1.

If there are two distinct coordinates *i*, and *j*, whose values are both not constant for all points of *T*, then they both take all values 0, 1, ..., n - 1, and since *T* is of order *n*, each value of the *i*th coordinate occurs with only one value of the *j*th coordinate. These must be equal for all points of *T*, otherwise the correspondence would define a non-trivial automorphism of *S*.

Thus each mCS(n) subsystem of S^v is isomorphic to S. For each $A \subset \{1, 2, ..., v\}$, there are $n^{v-|A|}$ such mCS(n), one for each choice of the fixed values. We shall say that any two subsystems corresponding to the same set A are mutually *parallel*.

Lemma 2.2. For each automorphism ϕ of S^v there is a permutation, σ , of $1, \ldots, v$ such that $\phi(x_1, \ldots, x_v) = (x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(v)})$, for every $x_1, \ldots, x_v \in [n]$.

Proof. We prove that for each $1 \le i \le v$, there is a $1 \le j \le v$ such that for any values $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_v \in [n]$, there are values $\alpha_1, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots, \alpha_v \in [n]$ with

 $\phi(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_v)=(\alpha_1,\ldots,\alpha_{j-1},x,\alpha_{j+1},\ldots,\alpha_v)$

for each $x \in [n]$.

For any choice of *i* and of values $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_v$, the set of points $T = \{X(x) : (X(x))_r = a_r, r \neq i, (X(x))_i = x, x \in [n]\}$ forms an *m*CS(*n*) subsystem of S^v , and therefore so does the image of these points in ϕ . By Lemma 2.1 there is a non-empty set of values $A_i = \{j_1, j_2, \ldots, j_k\} \subset \{1, 2, \ldots, v\}$, and a set of values $\{\alpha_r : \alpha_r \in [n], r \in \{1, 2, \ldots, v\} \setminus A_i\}$ such that for each $X(x), x \in [n]$ there is a $y \in [n]$ with $(\phi(X(x)))_r = y$ for $r \in A_i$ and $(\phi(X(x)))_r = \alpha_r$ otherwise.

Observe that for any $r \in A_i$, the mapping $x \mapsto X(x) \mapsto (\phi(X(x)))_r = y$ provides an automorphism of *S*, from which we conclude that y = x, since *S* has a trivial automorphism group.

We now show that the images under ϕ of the mCS(n) subsystems obtained by varying the $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_v$ are mutually parallel.

In order to show this it is only necessary to show that A_i remains the same if we change any one a_t , $t \neq i$ at a time. So choose $t \neq i, 1 \leq t \leq v$, and substitute any value $a'_t \neq a_t$ for a_t . Then there is a set $A'_i \subset \{1, 2, ..., v\}$, and values α'_r , $r \in \{1, 2, ..., v\} \setminus A'_i$ such that ϕ maps each point $X'(x) = (a_1, ..., a_{t-1}, a'_t, a_{t+1}, ..., a_{i-1}, x, a_{i+1}, ..., a_v)$ to the point $\phi(X'(x))$, where $(\phi(X'(x)))_r = x$ if $r \in A'_i$, and $(\phi(X'(x)))_r = \alpha'_r$ otherwise. Download English Version:

https://daneshyari.com/en/article/4647476

Download Persian Version:

https://daneshyari.com/article/4647476

Daneshyari.com