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a b s t r a c t

We characterize the initial positions from which the first player has a winning strategy
in a certain two-player game. This provides a generalization of Hall’s Theorem. Vizing’s
Theorem on edge-coloring follows from a special case.
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1. Introduction

A set system is a finite family of finite sets. A transversal of a set system S is an injection f : S ↩→


S such that f (S) ∈ S
for each S ∈ S. Hall’s Theorem [4] gives the precise conditions under which a set system has a transversal.

Theorem 1.1 (Hall [4]). A set system S has a transversal if and only if
 W

 ≥ |W | for each W ⊆ S.

We generalize this by analyzing winning strategies in a two-player game played on a set system by Fixer (henceforth
dubbed F) and Breaker. Fixer wins the game by eventually modifying the set system so that it has a transversal; if Breaker
has a strategy to prevent this forever, then we say that Breaker wins. Additionally, when playing on the set system S, we
provide a pot P with


S ⊆ P . Fixer moves first and he can do the following.

Fixer’s turn. Pick x ∈ P and S ∈ S with x ∉ S and replace S with S ∪ {x} r {y} for some y ∈ S.

For k ∈ N, let [k] = {1, . . . , k}. For each t ∈ [|S| − 1], we have a different rule for Breaker. We denote Breaker by Bt
when he is playing with the following rule.

Breaker’s turn. If F modified S ∈ S by inserting x and removing y, Bt can pick up to t sets in S r {S} and modify them by
swapping x for y or y for x.

To state the main theorem, we need additional notation. For W ⊆ S and x ∈ P define the degree in W of x, written dW (x),
by

dW (x) = |{S ∈ W : x ∈ S}| .
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Define the t-value of W ⊆ S, written νt(W), by

νt(W) =


x∈


W


dW (x) − 1

t + 1


.

Intuitively, thismeasures howmuch F can increase
 W

withoutBt undoing the progress. For instance, if dW (y) ≤ t+1
and F swaps x in for y at W , then Bt can change all instances of x to y, since x appears in at most t other sets. In this case y
contributes nothing to the t-value of W . Our main theorem shows that this intuition is correct.

Theorem 1.2. In a set system S with


S ⊆ P and |P| ≥ |S| , F has a winning strategy against Bt if and only if
 W

 ≥

|W | − νt(W) for each W ⊆ S.

We can recover Hall’s Theorem from the case t = |S|−1; that is, Bt can remove all y’s in S rendering F’s move equivalent
to swapping the names of x and y, that is, rendering it useless. In Section 3 we show that Vizing’s Theorem on edge-coloring
is a quick corollary of this result. In fact, the strategy employed by F is based, in part, on the proofs of Vizing’s Theorem by
Ehrenfeucht, Faber, and Kierstead [2] and by Schrijver [5]. For a graph G, let χ ′(G) be the edge-chromatic number of G and
let ∆(G) be the maximum degree of G.

Corollary 1.3 (Vizing [7]). If G is a simple graph, then χ ′(G) ≤ ∆(G) + 1.

There is a ‘‘multiplicity’’ version of Hall’s Theorem in which the representatives sought for the sets in the family are
disjoint subsets of specified sizes. When each set S is asked to have η(S) representatives in the ‘‘η-transversal’’, the desired
subsets can be found bymaking η(S) copies of each set S and applying Hall’s Theorem. In Sections 4 and 5we generalize this
folklore extension of Hall’s Theorem and use the generalization to give a non-standard proof of the following result from
which classical edge-coloring results and various ‘‘adjacency lemmas’’ follow (see [6] for the standard proof and how these
consequences are derived). Let xy be an edge in a multigraph G. We denote the multiplicity of xy by µ(xy). Additionally, xy
is critical if χ ′(G − xy) < χ ′(G).

Corollary 1.4. Let G be a multigraph satisfying χ ′(G) ≥ ∆(G) + 1. For each critical edge xy in G, there exists X ⊆ N(x) with
y ∈ X and |X | ≥ 2 such that

v∈X


d(v) + µ(xv) + 1 − χ ′(G)


≥ 2.

2. The proof

Proof of Theorem 1.2. First we prove necessity of the condition. Suppose we have W ⊆ S with
 W

 < |W |−νt(W). We
show that no matter what moves Fmakes, Bt can maintain this invariant. We then always have

 W
 < |W | and hence W

can never have a transversal.
Suppose F modifies S ∈ S by inserting x and removing y to get S ′. If S ∉ W , then Bt does not need to do anything, so we

may assume S ∈ W . Put W ′
= W ∪


S ′


r {S}.

If dW (x) = 0, then
 W ′

 =
 W

 + 1. Now Bt swaps x in for y in min {t, dW ′(y)} sets of W ′ to form W∗. If dW ′(y) ≤ t ,
then dW∗(y) = 0 and we have

 W∗
 =

 W
; hence the invariant is maintained. Otherwise νt(W

∗) < νt(W) because
the degree of y has decreased by t + 1, and again the invariant is maintained.

Hence we may assume dW (x) > 0. Now
 W ′

 ≤
 W

. In order to have a chance to destroy the invariant, F must
achieve νt(W

′) > νt(W). This requires dW ′(x) − 1 to be a multiple of t + 1 and dW ′(y) to not be a multiple of t + 1; in
particular, dW ′(y) ≠ dW ′(x) − 1. If dW ′(y) < dW ′(x) − 1, then Bt swaps y in for x in one set in W ′ r


S ′


. Doing so maintains

the invariant, since now every element has the same degree in the new set system as in W . Otherwise, dW ′(y) > dW ′(x) − 1
and Bt swaps x in for y in min {t, dW ′(y) + 1 − dW ′(x)} sets of W ′. This reduces the contribution from y without further
increasing the contribution from x and thereby maintains the invariant.

Now we prove sufficiency. Suppose the condition is not sufficient for F to have a winning strategy. Among all
counterexamples having the fewest sets, choose S to maximize

 S
.

First, suppose
 S

 ≥ |S|. Let C be a minimal nonempty subset of


S such that |WC | ≤ |C |, where WC = {S ∈ S |

C ∩ S ≠ ∅} (we can make this choice because


S is such a subset). Create a bipartite graph with parts C and WC and an
edge from x ∈ C to S ∈ WC if and only if x ∈ S. If |C | = 1, then we clearly have a matching of C into WC . Otherwise, by
minimality of C , for every set D such that ∅ ≠ D ⊂ C we have |WD| > |D| and hence |C | = |WC |; now applying Hall’s
Theorem (for bipartite graphs) gives a matching of C into WC . This matching gives a transversal f :WC ↩→


WC with image

C . Put S′
= S r WC and P ′

= P r C . The hypotheses of the claim are satisfied by S′ and P ′. If F continues to play only
using S′ and P ′, then Bt cannot destroy the transversal of WC that exists using elements of C , even though Bt may play
on all of S, because F will make no further move involving the elements in that transversal. Now minimality of |S| gives a
contradiction.
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