Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note A game generalizing Hall's Theorem

Landon Rabern

314 Euclid Way, Branford, CT 06405, United States

ARTICLE INFO

Available online 22 December 2013

Article history: Received 8 March 2012 Received in revised form 9 December 2013 Accepted 10 December 2013

A B S T R A C T

We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall's Theorem. Vizing's Theorem on edge-coloring follows from a special case.

© 2013 Elsevier B.V. All rights reserved.

Keywords: Hall's Theorem Transversal SDR Edge coloring Vizing

1. Introduction

A set system is a finite family of finite sets. A transversal of a set system \mathscr{S} is an injection $f: \mathscr{S} \hookrightarrow \bigcup \mathscr{S}$ such that $f(S) \in S$ for each $S \in \mathscr{S}$. Hall's Theorem [4] gives the precise conditions under which a set system has a transversal.

Theorem 1.1 (Hall [4]). A set system \mathscr{S} has a transversal if and only if $|\bigcup w| \ge |w|$ for each $w \subseteq \mathscr{S}$.

We generalize this by analyzing winning strategies in a two-player game played on a set system by *Fixer* (henceforth dubbed **F**) and *Breaker*. Fixer wins the game by eventually modifying the set system so that it has a transversal; if Breaker has a strategy to prevent this forever, then we say that Breaker wins. Additionally, when playing on the set system ϑ , we provide a *pot P* with $\bigcup \vartheta \subseteq P$. Fixer moves first and he can do the following.

Fixer's turn. Pick $x \in P$ and $S \in \mathcal{S}$ with $x \notin S$ and replace S with $S \cup \{x\} \setminus \{y\}$ for some $y \in S$.

For $k \in \mathbb{N}$, let $[k] = \{1, ..., k\}$. For each $t \in [|\mathscr{S}| - 1]$, we have a different rule for Breaker. We denote Breaker by **B**_t when he is playing with the following rule.

Breaker's turn. If **F** modified $S \in \mathcal{S}$ by inserting *x* and removing *y*, **B**_t can pick up to *t* sets in $\mathcal{S} \setminus \{S\}$ and modify them by swapping *x* for *y* or *y* for *x*.

To state the main theorem, we need additional notation. For $W \subseteq \mathscr{S}$ and $x \in P$ define the *degree* in W of x, written $d_W(x)$, by

 $d_{\mathcal{W}}(x) = |\{S \in \mathcal{W} \colon x \in S\}|.$

E-mail address: landon.rabern@gmail.com.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.12.010

Define the *t*-value of $W \subseteq \mathscr{S}$, written $v_t(W)$, by

$$v_t(\mathcal{W}) = \sum_{x \in \bigcup \mathcal{W}} \left\lfloor \frac{d_{\mathcal{W}}(x) - 1}{t + 1} \right\rfloor$$

Intuitively, this measures how much **F** can increase $|\bigcup W|$ without **B**_t undoing the progress. For instance, if $d_W(y) \le t+1$ and **F** swaps *x* in for *y* at *W*, then B_t can change all instances of *x* to *y*, since *x* appears in at most *t* other sets. In this case *y* contributes nothing to the *t*-value of *W*. Our main theorem shows that this intuition is correct.

Theorem 1.2. In a set system \mathscr{S} with $\bigcup \mathscr{S} \subseteq P$ and $|P| \ge |\mathscr{S}|$, **F** has a winning strategy against **B**_t if and only if $|\bigcup \mathscr{W}| \ge |\mathscr{W}| - v_t(\mathscr{W})$ for each $\mathscr{W} \subseteq \mathscr{S}$.

We can recover Hall's Theorem from the case $t = |\delta| - 1$; that is, \mathbf{B}_t can remove all y's in δ rendering \mathbf{F} 's move equivalent to swapping the names of x and y, that is, rendering it useless. In Section 3 we show that Vizing's Theorem on edge-coloring is a quick corollary of this result. In fact, the strategy employed by \mathbf{F} is based, in part, on the proofs of Vizing's Theorem by Ehrenfeucht, Faber, and Kierstead [2] and by Schrijver [5]. For a graph *G*, let $\chi'(G)$ be the edge-chromatic number of *G* and let $\Delta(G)$ be the maximum degree of *G*.

Corollary 1.3 (Vizing [7]). If G is a simple graph, then $\chi'(G) \leq \Delta(G) + 1$.

There is a "multiplicity" version of Hall's Theorem in which the representatives sought for the sets in the family are disjoint subsets of specified sizes. When each set *S* is asked to have $\eta(S)$ representatives in the " η -transversal", the desired subsets can be found by making $\eta(S)$ copies of each set *S* and applying Hall's Theorem. In Sections 4 and 5 we generalize this folklore extension of Hall's Theorem and use the generalization to give a non-standard proof of the following result from which classical edge-coloring results and various "adjacency lemmas" follow (see [6] for the standard proof and how these consequences are derived). Let *xy* be an edge in a multigraph *G*. We denote the multiplicity of *xy* by $\mu(xy)$. Additionally, *xy* is *critical* if $\chi'(G - xy) < \chi'(G)$.

Corollary 1.4. Let G be a multigraph satisfying $\chi'(G) \ge \Delta(G) + 1$. For each critical edge xy in G, there exists $X \subseteq N(x)$ with $y \in X$ and $|X| \ge 2$ such that

$$\sum_{v\in X} \left(d(v) + \mu(xv) + 1 - \chi'(G) \right) \ge 2.$$

2. The proof

Proof of Theorem 1.2. First we prove necessity of the condition. Suppose we have $W \subseteq \mathscr{S}$ with $|\bigcup W| < |W| - v_t(W)$. We show that no matter what moves **F** makes, **B**_t can maintain this invariant. We then always have $|\bigcup W| < |W|$ and hence W can never have a transversal.

Suppose **F** modifies $S \in \mathscr{S}$ by inserting *x* and removing *y* to get *S'*. If $S \notin \mathscr{W}$, then **B**_t does not need to do anything, so we may assume $S \in \mathscr{W}$. Put $\mathscr{W}' = \mathscr{W} \cup \{S'\} \setminus \{S\}$.

If $d_{W}(x) = 0$, then $|\bigcup W'| = |\bigcup W| + 1$. Now **B**_t swaps x in for y in min {t, $d_{W'}(y)$ } sets of W' to form W*. If $d_{W'}(y) \le t$, then $d_{W^*}(y) = 0$ and we have $|\bigcup W^*| = |\bigcup W|$; hence the invariant is maintained. Otherwise $v_t(W^*) < v_t(W)$ because the degree of y has decreased by t + 1, and again the invariant is maintained.

Hence we may assume $d_{W}(x) > 0$. Now $|\bigcup W'| \le |\bigcup W|$. In order to have a chance to destroy the invariant, **F** must achieve $v_t(W') > v_t(W)$. This requires $d_{W'}(x) - 1$ to be a multiple of t + 1 and $d_{W'}(y)$ to not be a multiple of t + 1; in particular, $d_{W'}(y) \ne d_{W'}(x) - 1$. If $d_{W'}(y) < d_{W'}(x) - 1$, then **B**_t swaps y in for x in one set in $W' \setminus \{S'\}$. Doing so maintains the invariant, since now every element has the same degree in the new set system as in W. Otherwise, $d_{W'}(y) > d_{W'}(x) - 1$ and **B**_t swaps x in for y in min $\{t, d_{W'}(y) + 1 - d_{W'}(x)\}$ sets of W'. This reduces the contribution from y without further increasing the contribution from x and thereby maintains the invariant.

Now we prove sufficiency. Suppose the condition is not sufficient for **F** to have a winning strategy. Among all counterexamples having the fewest sets, choose δ to maximize $|\bigcup \delta|$.

First, suppose $|\bigcup \delta| \ge |\delta|$. Let *C* be a minimal nonempty subset of $\bigcup \delta$ such that $|W_C| \le |C|$, where $W_C = \{S \in \delta \mid C \cap S \neq \emptyset\}$ (we can make this choice because $\bigcup \delta$ is such a subset). Create a bipartite graph with parts *C* and W_C and an edge from $x \in C$ to $S \in W_C$ if and only if $x \in S$. If |C| = 1, then we clearly have a matching of *C* into W_C . Otherwise, by minimality of *C*, for every set *D* such that $\emptyset \neq D \subset C$ we have $|W_D| > |D|$ and hence $|C| = |W_C|$; now applying Hall's Theorem (for bipartite graphs) gives a matching of *C* into W_C . This matching gives a transversal $f: W_C \hookrightarrow \bigcup W_C$ with image *C*. Put $\delta' = \delta \setminus W_C$ and $P' = P \setminus C$. The hypotheses of the claim are satisfied by δ' and P'. If **F** continues to play only using δ' and \mathcal{P}' , then **B**_t cannot destroy the transversal of W_C that exists using elements of *C*, even though **B**_t may play on all of δ , because **F** will make no further move involving the elements in that transversal. Now minimality of $|\delta|$ gives a contradiction.

Download English Version:

https://daneshyari.com/en/article/4647508

Download Persian Version:

https://daneshyari.com/article/4647508

Daneshyari.com