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a b s t r a c t

Let C be a plane convex body. The relative distance (or C-distance) of points a, b ∈ R2 is
defined by the ratio of the Euclidean length of the line-segment ab to half of the Euclidean
length of a longest chord of C , parallel to ab. It was conjectured that there exists no plane
convex body whose boundary contains eleven points at pairwise relative distances greater
than 2

3 . We give an affirmative answer to this conjecture.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let k (≥2) be an integer, to find k points on the sphere or in the ball of a Euclidean n-space En such that their pairwise
distances are as large as possible is a long-standing problem in geometry. A generalization of this problemwas presented by
Doyle, Lagarias and Randall [4], and by Lassak [10]. Doyle et al. considered the points in the boundary of the unit ball C of a
Minkowski plane [4]. Lassak gave a more general approach, that is, let C be an arbitrary plane convex body and the problem
is to find configurations of points in the boundary of C , whose pairwise distances are large in the sense of the following
notion of C-distance of points [10]. Some results concerning this kind of distance appeared in [1–3,5–15].

We use some definitions from [3]. For arbitrary different points a, b ∈ E2, denote by ab the line-segment connecting the
points a and b, by |ab| the Euclidean length of ab, and by ab the straight line passing through a and b. The C-distance dC (a, b)
of points a, b is defined by the ratio of |ab| to 1

2 |a1b1|, where a1b1 is a longest chord of C parallel to ab. If there is no confusion
about C , we use the term relative distance of a and b. Observe that for arbitrary points a, b ∈ E2 the C-distance of a and b is
equal to their [

1
2 (C − C)]-distance.

Denote by µk(C) the greatest possible number d such that the boundary of C contains k points at pairwise C-distances
at least d, and denote by C the family of plane convex bodies.

Let

µk(C) = sup{µk(C) | C ∈ C}.
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Fig. 1. Case 1.

Clearly, µk(C) ≤ 2 for any convex body C , and µk(C) = 2 for k = 2, 3, 4. It is known that µ5(C) =
√
5− 1 [3], µ6(C) =

8 − 4
√
3, µ7(C) = 1 [7], µ8(C) = 1 [13], and µ9(C) ≥

√
3 − 1, µ10(C) > 2/3 (see [14]).

Lángi [8, Chapter 3] conjectured that there exists no plane convex body whose boundary contains nine points at pairwise
relative distances greater than 4 sin π

18 , and that there exists no plane convex body whose boundary contains ten (or eleven)
points at pairwise relative distances greater than 2

3 . Since these numbers are attained for some particular bodies, he formulated
the conjectures that µ9(C) = 4 sin π

18 and µ10(C) = µ11(C) =
2
3 .

In 2009, Lan and Su showed that µ9(C) ≥ 6 − 2
√
7, which is over 4 sin π

18 . Thus the above conjecture about nine points
fails [6]. In 2012, Su et al. improved the lower bound for µ9(C) to

√
3 − 1 and also disproved the above conjecture about

ten points by showing that µ10(C) > 2
3 (see [14]). In this paper, we confirm the conjecture about eleven points.

2. The main results

In order to formulate our result about the relative distances of eleven points in the boundary of a plane convex body
we need the following observation. For arbitrary points a, b ∈ En and for arbitrary convex bodies C1 ⊂ C2, it is clear that
dC2(a, b) ≤ dC1(a, b). Therefore, to find the upper bound of the minimum pairwise relative distances of k points in the
boundary of an arbitrary plane convex body it suffices to examine convex k-gons inscribed in this body. Moreover, in order
to determine µk(C), we only need to examine the relative distances of every two consecutive vertices of convex k-gons (see
Lemma 3 together with the comment just after the proof of Lemma 6 and the last paragraph of p. 146 of [11]). If two lines
pq and rs are parallel, we write pq ∥ rs.

Theorem. Every convex hendecagon has two consecutive vertices at relative distance at most 2
3 .

Proof. Denote by E the given convex hendecagon. Let T = abc be a triangle formed by three vertices of E with the maximal
possible area. For every non-degenerate affine transformation φ and for arbitrary points p, q ∈ C we know that dφ(C)(φ(p),
φ(q)) = dC (p, q). Thus we suppose, without loss of generality, that T is a regular triangle. Let T0 be the image of T under the
homothety of ratio −2 and with the homothety center in the center of gravity of T . Denote by a0, b0, c0 the vertices of T0
such that a0, b0, c0 are the images of points a, b, c , respectively. From the maximality of the area of T we conclude that all
vertices of E belong to the triangle T0. Denote by V (E) the vertex set of E. Since V (E) \ {a, b, c} has eight points, we consider
the following two cases.

Case 1: at least four vertices from V (E) \ {a, b, c} belong to one of the three triangles a0bc, ab0c , and abc0.
Without loss of generality, we suppose that the triangle a0bc contains at least four vertices from V (E) \ {a, b, c}. Denote

by v1 (resp. v2, v3, and v4) the vertex adjacent to c (resp. v1, v4, and b) (which are in clockwise order). Let x1, x2 ∈ a0c and
|cx1| = |x1x2| = |x2a0|; y1, y2 ∈ a0b and |by1| = |y1y2| = |y2a0|; z1, z2 ∈ bc and |cz1| = |z1z2| = |z2b| (see Fig. 1).

If one of the four relative distances dE(c, v1), dE(v1, v2), dE(v3, v4), and dE(b, v4) is at most 2
3 , then the result holds. Thus

we may assume that all these four relative distances exceed 2
3 . By the convexity of E we know that the vertices v2 and v3

belong to the rhombus a0x2wy2, where w is the midpoint of the segment x1y1. Let us take a Cartesian coordinate system
such that a, b, and c are (0, 0), (1,

√
3), and (−1,

√
3), respectively. The convexity of E implies that the slope of the line v2v3

is between −
√
3 and

√
3, hence dE(v2, v3) ≤

2
3 . If v2 and v3 are consecutive vertices of E, then the result is true. Otherwise,

one can take a vertex v of E between v2 and v3 and consider the side of E with endpoints v and v′, then v and v′ also belong
to the rhombus a0x2wy2. Again, by the convexity of E, we know that dE(v, v′) ≤

2
3 .

Case 2: one of the three triangles a0bc , ab0c, abc0 contains two vertices, and each of the other two triangles contains three
vertices from V (E) \ {a, b, c}. We may assume that the triangle a0bc contains two vertices from V (E) \ {a, b, c}.

Suppose that c, x, y, z, a, u, v, w, b are consecutive vertices of E in counterclockwise order. If one of the inequalities
dE(c, x) ≤

2
3 , dE(x, y) ≤

2
3 , dE(y, z) ≤

2
3 , and dE(z, a) ≤

2
3 holds, then we are done. Consider the opposite case. We may

also suppose that dE(a, u) > 2
3 and dE(w, b) > 2

3 . Denote by f the intersection point of the lines xy and az.
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