Note

On the relative distances of eleven points in the boundary of a plane convex body ${ }^{\text {a }}$

Zhanjun Su ${ }^{\text {a }}$, Xianglin Wei ${ }^{\text {b,* }}$, Sipeng Li ${ }^{\text {a }}$, Jian Shen ${ }^{\text {c }}$
${ }^{\text {a }}$ College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, China
${ }^{\text {b }}$ College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
${ }^{\text {c }}$ Department of Mathematics, Texas State University-San Marcos Texas State, San Marcos, TX 78666, USA

ARTICLE INFO

Article history:

Received 30 June 2013
Received in revised form 4 November 2013
Accepted 6 November 2013
Available online 21 November 2013

Keywords:

Relative distance
Homothety
Plane convex body

Abstract

Let C be a plane convex body. The relative distance (or C-distance) of points $a, b \in R^{2}$ is defined by the ratio of the Euclidean length of the line-segment $a b$ to half of the Euclidean length of a longest chord of C, parallel to $a b$. It was conjectured that there exists no plane convex body whose boundary contains eleven points at pairwise relative distances greater than $\frac{2}{3}$. We give an affirmative answer to this conjecture.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let $k(\geq 2)$ be an integer, to find k points on the sphere or in the ball of a Euclidean n-space E^{n} such that their pairwise distances are as large as possible is a long-standing problem in geometry. A generalization of this problem was presented by Doyle, Lagarias and Randall [4], and by Lassak [10]. Doyle et al. considered the points in the boundary of the unit ball C of a Minkowski plane [4]. Lassak gave a more general approach, that is, let C be an arbitrary plane convex body and the problem is to find configurations of points in the boundary of C, whose pairwise distances are large in the sense of the following notion of C-distance of points [10]. Some results concerning this kind of distance appeared in [1-3,5-15].

We use some definitions from [3]. For arbitrary different points $a, b \in E^{2}$, denote by $a b$ the line-segment connecting the points a and b, by $|a b|$ the Euclidean length of $a b$, and by $\overline{a b}$ the straight line passing through a and b. The C-distance $d_{C}(a, b)$ of points a, b is defined by the ratio of $|a b|$ to $\frac{1}{2}\left|a_{1} b_{1}\right|$, where $a_{1} b_{1}$ is a longest chord of C parallel to $a b$. If there is no confusion about C, we use the term relative distance of a and b. Observe that for arbitrary points $a, b \in E^{2}$ the C-distance of a and b is equal to their $\left[\frac{1}{2}(C-C)\right]$-distance.

Denote by $\mu_{k}(C)$ the greatest possible number d such that the boundary of C contains k points at pairwise C-distances at least d, and denote by \mathcal{C} the family of plane convex bodies.

Let

$$
\mu_{k}(\mathbb{C})=\sup \left\{\mu_{k}(C) \mid C \in \mathbb{C}\right\}
$$

[^0]

Fig. 1. Case 1.
Clearly, $\mu_{k}(C) \leq 2$ for any convex body C, and $\mu_{k}(\mathcal{C})=2$ for $k=2,3,4$. It is known that $\mu_{5}(\mathcal{C})=\sqrt{5}-1[3], \mu_{6}(\mathcal{C})=$ $8-4 \sqrt{3}, \mu_{7}(\mathcal{C})=1$ [7], $\mu_{8}(\mathcal{C})=1$ [13], and $\mu_{9}(\mathcal{C}) \geq \sqrt{3}-1, \mu_{10}(\mathcal{C})>2 / 3$ (see [14]).

Lángi [8, Chapter 3] conjectured that there exists no plane convex body whose boundary contains nine points at pairwise relative distances greater than $4 \sin \frac{\pi}{18}$, and that there exists no plane convex body whose boundary contains ten (or eleven) points at pairwise relative distances greater than $\frac{2}{3}$. Since these numbers are attained for some particular bodies, he formulated the conjectures that $\mu_{9}(\mathbb{C})=4 \sin \frac{\pi}{18}$ and $\mu_{10}(\mathcal{C})=\mu_{11}(\mathbb{C})=\frac{2}{3}$.

In 2009, Lan and Su showed that $\mu_{9}(\mathcal{C}) \geq 6-2 \sqrt{7}$, which is over $4 \sin \frac{\pi}{18}$. Thus the above conjecture about nine points fails [6]. In 2012, Su et al. improved the lower bound for $\mu_{9}(\mathbb{C})$ to $\sqrt{3}-1$ and also disproved the above conjecture about ten points by showing that $\mu_{10}(\mathcal{C})>\frac{2}{3}$ (see [14]). In this paper, we confirm the conjecture about eleven points.

2. The main results

In order to formulate our result about the relative distances of eleven points in the boundary of a plane convex body we need the following observation. For arbitrary points $a, b \in E^{n}$ and for arbitrary convex bodies $C_{1} \subset C_{2}$, it is clear that $d_{C_{2}}(a, b) \leq d_{C_{1}}(a, b)$. Therefore, to find the upper bound of the minimum pairwise relative distances of k points in the boundary of an arbitrary plane convex body it suffices to examine convex k-gons inscribed in this body. Moreover, in order to determine $\mu_{k}(\mathcal{C})$, we only need to examine the relative distances of every two consecutive vertices of convex k-gons (see Lemma 3 together with the comment just after the proof of Lemma 6 and the last paragraph of $p .146$ of [11]). If two lines $\overline{p q}$ and $\overline{r s}$ are parallel, we write $\overline{p q} \| \overline{r s}$.

Theorem. Every convex hendecagon has two consecutive vertices at relative distance at most $\frac{2}{3}$.
Proof. Denote by E the given convex hendecagon. Let $T=a b c$ be a triangle formed by three vertices of E with the maximal possible area. For every non-degenerate affine transformation ϕ and for arbitrary points $p, q \in C$ we know that $d_{\phi(C)}(\phi(p)$, $\phi(q))=d_{C}(p, q)$. Thus we suppose, without loss of generality, that T is a regular triangle. Let T_{0} be the image of T under the homothety of ratio -2 and with the homothety center in the center of gravity of T. Denote by a_{0}, b_{0}, c_{0} the vertices of T_{0} such that a_{0}, b_{0}, c_{0} are the images of points a, b, c, respectively. From the maximality of the area of T we conclude that all vertices of E belong to the triangle T_{0}. Denote by $V(E)$ the vertex set of E. Since $V(E) \backslash\{a, b, c\}$ has eight points, we consider the following two cases.

Case 1: at least four vertices from $V(E) \backslash\{a, b, c\}$ belong to one of the three triangles $a_{0} b c, a b_{0} c$, and $a b c_{0}$.
Without loss of generality, we suppose that the triangle $a_{0} b c$ contains at least four vertices from $V(E) \backslash\{a, b, c\}$. Denote by v_{1} (resp. v_{2}, v_{3}, and v_{4}) the vertex adjacent to c (resp. v_{1}, v_{4}, and b) (which are in clockwise order). Let $x_{1}, x_{2} \in a_{0} c$ and $\left|c x_{1}\right|=\left|x_{1} x_{2}\right|=\left|x_{2} a_{0}\right| ; y_{1}, y_{2} \in a_{0} b$ and $\left|b y_{1}\right|=\left|y_{1} y_{2}\right|=\left|y_{2} a_{0}\right| ; z_{1}, z_{2} \in b c$ and $\left|c z_{1}\right|=\left|z_{1} z_{2}\right|=\left|z_{2} b\right|$ (see Fig. 1).

If one of the four relative distances $d_{E}\left(c, v_{1}\right), d_{E}\left(v_{1}, v_{2}\right), d_{E}\left(v_{3}, v_{4}\right)$, and $d_{E}\left(b, v_{4}\right)$ is at most $\frac{2}{3}$, then the result holds. Thus we may assume that all these four relative distances exceed $\frac{2}{3}$. By the convexity of E we know that the vertices v_{2} and v_{3} belong to the rhombus $a_{0} x_{2} w y_{2}$, where w is the midpoint of the segment $x_{1} y_{1}$. Let us take a Cartesian coordinate system such that a, b, and c are $(0,0),(1, \sqrt{3})$, and $(-1, \sqrt{3})$, respectively. The convexity of E implies that the slope of the line $\overline{v_{2} v_{3}}$ is between $-\sqrt{3}$ and $\sqrt{3}$, hence $d_{E}\left(v_{2}, v_{3}\right) \leq \frac{2}{3}$. If v_{2} and v_{3} are consecutive vertices of E, then the result is true. Otherwise, one can take a vertex v of E between v_{2} and v_{3} and consider the side of E with endpoints v and v^{\prime}, then v and v^{\prime} also belong to the rhombus $a_{0} x_{2} w y_{2}$. Again, by the convexity of E, we know that $d_{E}\left(v, v^{\prime}\right) \leq \frac{2}{2}$.

Case 2: one of the three triangles $a_{0} b c, a b_{0} c, a b c_{0}$ contains two vertices, and each of the other two triangles contains three vertices from $V(E) \backslash\{a, b, c\}$. We may assume that the triangle $a_{0} b c$ contains two vertices from $V(E) \backslash\{a, b, c\}$.

Suppose that $c, x, y, z, a, u, v, w, b$ are consecutive vertices of E in counterclockwise order. If one of the inequalities $d_{E}(c, x) \leq \frac{2}{3}, d_{E}(x, y) \leq \frac{2}{3}, d_{E}(y, z) \leq \frac{2}{3}$, and $d_{E}(z, a) \leq \frac{2}{3}$ holds, then we are done. Consider the opposite case. We may also suppose that $d_{E}(a, u)>\frac{2}{3}$ and $d_{E}(w, b)>\frac{2}{3}$. Denote by f the intersection point of the lines $\overline{x y}$ and $\overline{a z}$.

https://daneshyari.com/en/article/4647533

Download Persian Version:
https://daneshyari.com/article/4647533

Daneshyari.com

[^0]: 4. This research was partially supported by National Natural Science Foundation of China (11071055) and the NSF of Hebei Province (A2013205089), and was partially supported by NSF (CNS 0835834, DMS 1005206) and Texas Higher Education Coordinating Board (ARP 003615-0039-2007).

 * Corresponding author.

 E-mail addresses: suzj888@163.com (Z. Su), wxlhebtu@126.com (X. Wei).

