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a b s t r a c t

Ivanov and Iofinova classified vertex-biprimitive edge-transitive cubic graphs in 1985. As a
natural generalization of Ivanov and Iofinova’s work, in this paper we present a classifica-
tion of tetravalent graphs which are G-vertex-biprimitive and G-edge-transitive for some
automorphism group G of the graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In a highly cited article [8], Ivanov and Iofinova classified vertex-biprimitive edge-transitive cubic graphs, based on the
classification of amalgams of edge-transitive cubic graphs obtained by Goldschmidt [7]. As a natural generalization of Ivanov
and Iofinova’s work, in this paper we classify vertex-biprimitive edge-transitive tetravalent graphs. Recall that a bipartite
graph Γ = (V , E) with two parts U and W is called G-biprimitive for some G ≤ AutΓ if G acts primitively on both U and
W , and is called G-edge-transitive if G is transitive on the edge set E. An arc of a graph is an ordered pair of adjacent vertices,
and a graph Γ is called G-arc-transitive if G ≤ AutΓ is transitive on the set of arcs.

The result of this paper is the following theorem.

Theorem 1.1. Let Γ be a finite connected bipartite graph of valency 4. Assume that Γ is G-biprimitive and G-edge-transitive,
where G ≤ AutΓ . Assume further that G is intransitive on V . Then for an edge {α, β}, one of the following holds:

(i) Γ = K4,4, and Z2
2 : Z3 ≤ G < AutΓ = S4 ≀ Z2.

(ii) |V | = 2p, 2p2, or 2p3, with p a prime, and one of the following holds, respectively,
G = Zp : Z4 with p > 5 and 4 | (p − 1), and AutΓ = G × Z2.
G = Z2

p : Z4 with 4 - (p − 1), or Z2
p : D8, and AutΓ = (Z2

p : D8) × Z2.
G = Z3

p : A4 or Z3
p : S4, and AutΓ = (Z3

p : S4) × Z2.
(iii) Γ is the standard double cover of a vertex-primitive arc-transitive tetravalent graph.
(iv) G = PSL2(p), where p is a prime with p ≡ ±13, ±37 (mod 40),Gα

∼= Gβ
∼= A4, and Γ is one of p+ε

6 non-isomorphic
graphs, where ε = 1 or −1 such that 3 divides p + ε.

(v) G = PSL2(3f ) with f ≥ 3 prime, Gα
∼= Gβ

∼= A4, and Γ is one of 3f−1
−1

2 non-isomorphic graphs.
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Table A
Amalgams associated with almost simple groups.

K Kα Kβ AutΓ Comments

PGL2(11) D24 S4 PGL2(11)
PSL2(13) D12 A4 PGL2(13)
PSL2(23) D24 S4 PSL2(23)
PSL2(p) S4 S4 PGL2(p) p ≡ ±1 (mod 8)
PSL3(3) S4 S4 PSL3(3).2
PSL3(3) 32

: 2S4 32
: 2S4 PSL3(3).2 Projective plane

PGL3(7) 32
: 2A4 62

: S3 PGL3(7).2
PGU3(5) 32

: 2A4 62
: S3 PGU3(5).2

PSp4(3) [33
] : S4 [33

] : 2A4 PSp4(3).2
G2(3) (31+2

+ × 32) : 2S4 (31+2
+ × 32) : 2S4 G2(3).2 Generalized hexagon

M12 32
: 2S4 32

: 2S4 M12.2 Weiss graph
Th [39

].2S4 32.[37
].2S4 Th Discovered in [3]

(vi) G is an almost simple group, there exists a normal subgroup K ▹ G such that K , Kα, Kβ and AutΓ lie in Table A, and for each
case there is a unique graph.

Moreover, if Γ is not arc-transitive, then G is one of the following groups: PSL2(p) as in part (iv), PSL2(3f ) as in part (v), or
PGL2(11), PSL2(13), PSL2(23), PGL3(7), PGU3(5), PSp4(3), or Th, as in Table A.

Remarks on Theorem 1.1:

(1) Unlike the cubic case, amalgams for tetravalent graphs are not known yet. The proof of Theorem 1.1 depends on the
classification of primitive permutation groups which have soluble stabilizers, as given in [10].

(2) Finite vertex-primitive arc-transitive tetravalent graphs are classified in [9], and so graphs in part (iii) of Theorem 1.1
are known.

(3) All the graphs in (iv) are the standard double covers of certain undirected graphs or digraphs. Some of the graphs in (iv)
are the standard double covers of graphs in (iii), while others are not, depending on the choice of Gβ (see Lemma 5.7 for
details). The graphs in (v) are the standard double covers of certain digraphs.

(4) To our best knowledge, the PGL3(7)-graph and PGU3(5)-graph are new examples, whereas all other graphs appearing
in Theorem 1.1 have been known.

(5) Some graphs in Theorem 1.1 are actually vertex-transitive, such as some of the graphs in part (iii), and the graphs
associated with the groups and stabilizers of the fourth row and the fifth row in Table A. The reader should keep inmind
that by ‘‘vertex-biprimitive’’ we mean AutΓ -vertex-intransitive. In this paper we only present G-vertex-biprimitive
graphs because in some cases (for example in part (iv)) the vertex transitivity depends on the choice of Gβ .

The layout of this paper is as follows. In Section 2 we present some of the graphs appearing in Theorem 1.1. In Section 3
we give some properties about the vertex stabilizers of edge-transitive tetravalent graphs. Then in Section 4, we give a
reduction of the proof of Theorem 1.1 to the case of almost simple groups. Finally in Section 5, we deal with the groups of
almost simple type, and in Section 6, we complete the proof of the main theorem.

2. Examples

In this section, we construct and study the graphs appearing in Theorem 1.1.
Let Γ = (V , E) be a connected bipartite G-edge-transitive regular graph, say of valency k, and let {α, β} be an edge. Then

the edge stabilizer Gαβ coincides with Gα ∩ Gβ ,Gα is transitive on Γ (α) with stabilizer (Gα)β = Gαβ , and Gβ is transitive on
Γ (β) with stabilizer (Gβ)α = Gαβ . Thus |Gα : Gαβ | = |Gβ : Gαβ | = k. Since Γ is connected, it follows that ⟨Gα,Gβ⟩ = G.

Conversely, for a group G and subgroups L, R < G such that L ∩ R is core-free, one can define a G-edge-transitive graph
with vertex set V = [G : L] ∪ [G : R], the disjoint union of the sets of the right cosets of L in G and R in G, such that

Lx ∼ Ry ⇐⇒ Ry ∼ Lx ⇐⇒ xy−1
∈ LR.

This graph is called a coset graph, and is denoted by Cos(G, L, R). This coset graph is G-vertex-intransitive, and is not
necessarily regular, the valencies of which are |L : L ∩ R| and |R : L ∩ R|. A detailed study of such graphs can be found in [6].

First we list the following three results for later use, the proof of Lemma 2.1 is simple and can be seen in [6], while
Lemma 2.3 is clear.

Lemma 2.1. Let Γ = (V , E) be a graph and let G ≤ AutΓ be transitive on E and intransitive on V . Then for an edge {α, β}, Γ

is isomorphic to Cos(G,Gα,Gβ).

Lemma 2.2. The coset graphs Cos(G, L1, R1) = Cos(G, L2, R2) if and only if L2 = Lg1 and R2 = Rg
1 for some g ∈ G.
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