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a b s t r a c t

On-line Ramsey theory studies a graph-building game between two players. The player
called Builder builds edges one at a time, and the player called Painter paints each new edge
red or blue after it is built. The graph constructed is the host graph. Builder wins the game
if the host graph at some point contains a monochromatic copy of a given goal graph. In the
Sk-game variant of the typical game, the host graph is constrained to havemaximumdegree
no greater than k. The on-line degree Ramsey number R̊∆(G) of a graph G is the minimum k
such that Builder wins an Sk-game in which G is the goal graph. In this paper, we complete
the investigation begun by Butterfield et al. into the on-line degree Ramsey numbers of
n-cycles. Namely, we show that R̊∆(Cn) = 4 for n ≥ 3.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The quintessential problem of graph Ramsey theory involves finding a monochromatic copy of a graph Gwithin a larger
graph whose edges are colored either red or blue. Given graphs G and H , we say that H arrows G if every 2-coloring of H
contains a monochromatic copy of G as a subgraph. Two basic parameters of Ramsey theory are

• The Ramsey number R(G) is the minimum number of vertices among graphs H that arrow G.
• The size Ramsey number R̂(G) is the minimum number of edges among graphs that arrow G.

These parameters may be defined similarly for s-colorings, s > 2. For the general case of s colors, Ramsey’s Theorem
states that, given any G, there exists N such that the complete graph Kn arrows G for n ≥ N .

The numbers called on-line Ramsey numbers, introduced by Grytczuk, Haluszczak, and Kierstead [2], are based upon the
following game: Two players, called Builder and Painter, generate a 2-colored graph H . Builder constructs edges one at a
time, using some combination of existing vertices and new vertices. As each edge is built, Painter colors it either red or blue.
Builder’s goal is for the graph H to contain a monochromatic copy of some given graph G, and Painter’s goal is to prevent
this from happening. We will call the graph G the goal graph and the 2-colored graph H that is being built the host graph.

If Builder is allowed to build edges without constraint, then Ramsey’s Theorem implies that by building a large complete
graph she can force Painter to create a monochromatic copy of G. The next question is whether Builder can also win if she
builds a sparse graph, instead of a complete one. We therefore restrict the game so that Builder is allowed to build only
edges such that the host graph remains within a specified class of graphs H . We call such a game an H-game.

We will consider the case where H is the class Sk of graphs H such that ∆(H) ≤ k, where ∆(H) denotes the maximum
degree of the graph H . The on-line degree Ramsey number R̊∆(G) is defined to be the minimum k such that Builder can win
the Sk-game where G is the goal.

Butterfield et al. [1] studied R̊∆(G) extensively. Among their results were: (i) a complete classification of graphs G such
that R̊∆(G) ≤ 3, (ii) a lower bound on R̊∆(G) for general graphs G, and (iii) an upper bound on R̊∆(T ) for trees T . In [3], this
upper bound is generalized to a game with more than two colors, and exact on-line degree Ramsey numbers are computed
for certain graphs in the multicolor case.
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Much of [1] was devoted to an examination of the on-line degree Ramsey numbers of cycles. The following is a summary
of their results in this area: The number R̊∆(Cn) equals either 4 or 5 for n ≥ 3. Additionally, it equals 4 in the following cases:
(i) n even, (ii) n ≥ 689, (iii) 337 ≤ n ≤ 514, (iv) n = 3.

We complete the investigation begun by [1] into the number R̊∆(Cn), showing that it equals 4 for n ≥ 3. Our proof
introduces useful new techniques in the study of on-line degree Ramsey numbers thatmay aid in the classification of general
graphsG satisfying R̊∆(G) = 4. In a separate paper [4],we classified all trees that satisfy this equation.Wehave also identified
many other graphs, neither trees nor cycles, that satisfy it. However, the problem of full classification appears to us to be
quite challenging.

Many other questions remain open relating to on-line degree Ramsey numbers, including the following, suggested in
[1]: Can graphs G with maximum degree fixed at d have arbitrarily large on-line degree Ramsey number? One can also ask
whether if it NP-hard to determine thewinner of an Sk-game on a given goal graph. Further generalizations of known results
in on-line Ramsey theory to a game of more colors could prove interesting.

2. Preliminary lemmas

A Painter is consistent if, whenever he is given a new edge e to be added to a host graph H , the color he assigns to e
depends only on that component of H ∪{e} containing e. Thus, for instance, a consistent Painter, when presented by Builder
with an isolated edge, will always color it the same way, regardless of the other components of the host graph.

It was proved in [1] that, for any graph G and integer k, Builder can win the Sk-game with goal G if and only if Builder can
win when Painter is constrained to play consistently. Hence, for the remainder of this paper, we will assume that Painter
plays consistently.

Following [1], we define a capacity function on a graph G to be a function assigning a positive integer to each vertex. A
weighted graph is a graph G with an associated capacity function. Given a weighted graph G and a non-weighted graph H ,
we say that H contains G if for some subgraph G′ of H isomorphic to G, the degree in H of each vertex of G′ is at most the
capacity of the corresponding vertex of G.

In general, when we speak of ‘‘graphs’’ in this paper, we will mean weighted graphs. By a (w1, . . . , wn)-weighted G,
we will mean the graph G with capacities w1, . . . , wn at vertices v1, . . . , vn, respectively, where V (G) = {v1, . . . , vn}. If
w1 = . . . = wn = w, we will write simply w-weighted G. When referring to the claw K1,3, we order the vertices with the
degree-3 vertex first.

Our goal in this paperwill be the proof that R̊∆(Cn) = 4 for n ≥ 3. Given thework of [1], it will suffice to prove R̊∆(Cn) = 4
when n is odd and at least 5. We will divide this proof into three sections: (i) a short proof that holds for n ≥ 13, (ii) a longer
proof for the case n = 5, and (iii) a quite complicated proof that deals with the tricky cases of n equal to 7, 9, and 11.

Within an Sn-game with goal G, we say that Builder can force a 2-colored copy of a graph H if she can play such that
Painter creates either a monochromatic copy of G (in which case Builder wins) or else a copy of H with the desired coloring.
The following result is a variation on lemmas of [1].

Lemma 2.1. Suppose that, in the S4-game with goal Cn, Builder can force a copy of a 2-colored (weighted) graph H containing a
vertex v of capacity at most 2.

(a) [Doubling Lemma] Builder can force a copy of the graph obtained by placing H alongside a copy H ′ of H and connecting
the two copies by the edge vv′, where the vertex v and its copy v′ have their capacities increased by 2 each, no other capacities
are changed, and the edge vv′ gets whatever color Builder desires.

(b) [Extension Lemma] Builder can force a copy of the graph obtained from H by raising the capacity of v by 2 and adding a
new vertex w of capacity 2, with the edge vw added in whatever color Builder desires.

Proof. We first prove the Doubling Lemma. Suppose without loss of generality that Builder wants vv′ to be constructed in
red. Taking advantage of Painter’s consistency, Builder forces n (2-colored) copies of H , then constructs an n-cycle on the
copies of v. If all the edges of the cycle are painted blue, then Builder wins immediately because a monochromatic copy of
Cn has been formed. Otherwise, Painter assigns red to some edge vv′ and we have the desired H and H ′, with v and v′ linked
by a red edge and with the capacities at each of these vertices increased by 2.

We now prove the Extension Lemma. Suppose without loss of generality that Builder wants vw to be constructed in red.
She then forces n(n−1)/2 copies ofH and constructs an n(n−1)-cycle alternating between the copies of v and new vertices.
If any edge of this cycle is red, then Builder has obtained the desired red edge vw. Otherwise, all edges are blue.

Builder now turns to the vertices in the n(n − 1)-cycle that are not part of a copy of H and hence have capacity 2. She
connects, for each i with 0 ≤ i < n, the i(n − 1)/2th such vertex to the (i + 1)(n − 1)/2th. This presents Painter with
an n-cycle, each of whose edges, if colored blue, completes a blue copy of Cn. Whatever Painter does, Builder wins. Note
that throughout this construction every vertex in the host graph has degree at most 4, in keeping with the conditions of the
S4-game. �

3. The case n ≥ 13

Theorem 3.1. R̊∆(Cn) ≤ 4 when n is odd and at least 13.
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