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a b s t r a c t

Stirling numbers and Bessel numbers have a long history, and both have been generalized
in a variety of directions. Here, we present a second level generalization that has both as
special cases. This generalization often preserves the inverse relation between the first and
second kind, and has simple combinatorial interpretations.We also frame the discussion in
terms of the exponential Riordan group. Then the inverse relation is just the group inverse,
and factoring inside the group leads to many results connecting the various Stirling and
Bessel numbers.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Bessel number of the second kind, B(n, k), is the number of ways in which an n-set X can be partitioned into k blocks
of size one or two. These Bessel numbers have many properties similar to those of the Stirling numbers of the second kind.
An explicit formula for B(n, k) is well known as

B(n, k) =


n!

2n−k(n − k)!(2k − n)!
if
n
2


≤ k ≤ n,

0 otherwise.
(1)

If j is the number of singleton blocks in these set partitions, then the Bessel numbers can be displayed in matrix form by
means of singleton blocks, the (n, j) entries being the Bessel numbers given by B(n, n+j

2 ) if n+ j is even and 0 if n+ j is odd:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 3 0 1 0 0 0
3 0 6 0 1 0 0
0 15 0 10 0 1 0
15 0 45 0 15 0 1

· · ·


=


ez

2/2, z

.
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The ⟨, ⟩ notation is the exponential Riordan group terminology,1 whichwill be explained briefly at the end of this section.
For an alternative approach, see [16].

If we think of a telephone call as a matching or a block of size 2, then we have the telephone exchange problem [10].
The total number of ways in which n subscribers to a telephone exchange can be connected is given by the row sums of the
matrix, and the generating function is

1 + z + 2
z2

2!
+ 4

z3

3!
+ 10

z4

4!
+ 26

z5

5!
+ · · · = ez+z2/2.

Here, the n subscribers could be vertices, and an edge connecting two vertices would represent a phone call. We would
then be thinking about a labeled graph in which every vertex has degree 0 or 1. Then the connected subgraphs are either
a single point or an edge. The connected part has the exponential generating function z + z2/2!; see [1,3,4,14,15] for the
exponential formula.

There aremany possible variations. For instance, a cell phone could be turned off, so the blocks of size 1 now can be in two
states. Then the generating function is e2z+z2/2!. Here is a different variation. We now also allow conference calls involving
three parties. The connected part generating function is thus z + z2/2! + z3/3!, and the resulting generating function is
ez+z2/2!+z3/3!. It is natural to allow blocks (or conference calls) of every size giving the connected part generating function
z + z2/2! + z3/3! + · · · = ez − 1. Now (ez − 1)k/k! is the generating function when we want exactly k blocks and n
subscribers (labeled vertices, distinguishable elements). If k is the number of blocks, we obtain the matrix ⟨1, ez − 1⟩, the
entries being the Stirling numbers of the second kind, S(n, k). Removing the restriction on block size gives the row sums,
starting 1, 1, 2, 5, 15, 51, . . . , the Bell numbers with generating function ee

z
−1.

The dual is given by arranging each block in a circle (or in a line with the largest element at the head of the line). The
connected part is

z +
z2

2!
+ 2!

z3

3!
+ 3!

z4

4!
+ · · · = z +

z2

2
+

z3

3
+

z4

4
+ · · · = ln

1
1 − z

.

Now, the matrix is

1, ln 1

1−z


, the entries being the unsigned Stirling numbers of the first kind, s(n, k). The row sums have

the generating function

eln
1

1−z =
1

1 − z
= 1 + z + z2 + · · · =


n≥0

n!
zn

n!
.

This generating function summarizes the fact that any element of the symmetric group on n letters can be written uniquely
as the product of disjoint cycles. The duality referred to earlier, after inserting minus signs on every other diagonal, can be
expressed as

⟨1, ln(1 + z)⟩

1, ez − 1


= ⟨1, z⟩

in Riordan group terminology.
Bessel numbers and Stirling numbers have been generalized in a variety of directions. One direction in which Bessel

numbers have been generalized is by permitting each block to be of size at most s for s ≥ 3. We refer to these numbers
as the s-restricted numbers of the second kind, Ms

2(n, k) [6,7]. There is a second direction in which Stirling numbers of the
second kind have been generalized as r-Stirling numbers, Sr(n, k) [5]. Suppose that there are r distinguished elements in
separate blocks or cycles. Wemay consider dividing up an army into squads, where the r lieutenants are in different squads.
The Stirling numbers of the first kind sr(n, k) would generalize by having the r distinguished elements in separate cycles.
For matchings, we might have r seeded players that we do not want to compete against each other.

In this paper, we present a second level generalization that has both the s-restricted numbers and the r-Stirling numbers
as special cases. This generalization often preserves the inverse relation between the first kind and the second kind, and
has simple combinatorial interpretations. We also frame the discussion in terms of the exponential Riordan group. Then
the inverse relation is just the group inverse, and factoring inside the group leads to many results connecting the various
Stirling, telephone exchange, and Bessel numbers.

Many combinatorial counting problems can be treated systematically using the Riordan group introduced by Shapiro,
Getu, Woan, and Woodson [12]. Here, we use various elements from the exponential version of the Riordan group, and the
generating functions are exponential generating functions, which we abbreviate as egfs.

An exponential Riordan matrix [2], also denoted as an e-Riordan matrix, is an infinite lower triangular matrix L = [ℓn,k]
whose kth column has egf g(z)f (z)k/k!, where g(0) ≠ 0, f (0) = 0 and f ′(0) ≠ 0. Equivalently, ℓn,k = n![zn]g(z)f (z)k/k!,
where [zn] is the operator that extracts the coefficient of zn. The matrix L is denoted by ⟨g(z), f (z)⟩. It is easy to show that, if
we multiply L = ⟨g(z), f (z)⟩ by a column vector h = (h0, h1, . . .)

T corresponding to the egf h(z), then the resulting column

1 As is customary in this setting, we index our rows and columns starting with the index 0.
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