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a b s t r a c t

We give an elementary proof of a formula expressing the rotation number of a cyclic uni-
modular sequence L = u1u2 . . . ud of lattice vectors ui ∈ Z2 in terms of arithmetically
defined local quantities. The formula has been originally derived by A. Higashitani and
M. Masuda [A. Higashitani, M. Masuda, Lattice multi-polygons, arXiv:1204.0088v2
[math.CO], [v2] Apr 2012; [v3] Dec 2012] with the aid of the Riemann–Roch formula ap-
plied in the context of toric topology. These authors also demonstrated that a generalized
version of the ‘Twelve-point theorem’ and a generalized Pick’s formula are among the con-
sequences or relatives of their result. Our approach emphasizes the role of ‘discrete curva-
ture invariants’ µ(a, b, c), where {a, b} and {b, c} are bases of Z2, as fundamental discrete
invariants ofmodular lattice geometry.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The following theorem of A. Higashitani andM. Masuda, proved in [4], is a close relative of the remarkable ‘Twelve-point
theorem’ [10,1,3,5,8]. Like its predecessors, the ‘Twelve-point theorem’ and Pick’s formula, it is an intriguing and easily
formulated statement about a sequence of lattice vectors, their rotation (winding) number and the associated, arithmetically
defined local quantities.

Theorem 1. The rotation number Rot(L) of a cyclic unimodular sequence L = u1u2 . . . ud can be calculated as the weighted sum

Rot(L) =
1
12

µ(L) +
1
4
ν(L) =

1
12

d
i=1

µ(ui−1, ui, ui+1) +
1
4

d
i=1

ν(ui, ui+1) (1)

of locally defined quantities µ(L) and ν(L) where ν(ui, ui+1) := det(ui, ui+1) ∈ {−1, +1} and µ(ui−1, ui, ui+1) = ai ∈ Z is the
integer determined by the equation

det(ui−1, ui)ui−1 + det(ui, ui+1)ui+1 + aiui = 0.

Theorem1may appear at first sight as quite elementary andnot difficult to comprehend, however it has a deepermeaning
and significance. Like its relative (and a consequence) the ‘Twelve-point theorem’, it is situated at the crossroads of several
mathematical areas, illuminating and offering new perspectives on ‘well understood’ mathematical concepts.

The first proof [4] (see also [9, Section 5]) of the formula (1) was based on a Riemann–Roch type theorem (Noether
formula) where the integers ai appeared as the self-intersection numbers of the corresponding homology classes of the
associated ‘topological toric manifold’.
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Our first objective in this paper is to give a conceptual and elementary proof of Theorem 1which is based on a systematic
analysis of the invariantµ(a, b, c). The secondobjective is to pave theway for the hypothetical higher dimensional analogues
of Theorem 1. For this reason the exposition emphasizes the study of invariants µ(a, b, c) and their higher dimensional
versions µj(a, b, a′) (Section 6) as ‘discrete curvature invariants’ situated within unimodular lattice geometry. This point of
view is similar to the approach of O. Karpenkov to ‘lattice trigonometry’, as part of his investigation of ‘lattice geometry
invariants’ [6,7].

A different, short and elementary computational proof of Theorem 1 was subsequently included in the new version of
the paper [4]. Their Lemma 1.3. fits in nicely in our approach so we took the opportunity to shorten the original proof ([11],
arXiv:1209.4981v1 [math.CO]), retaining its transparency and conceptuality.

We observe in passing (Section 5.1) that the proof of Poonen and Rodriguez-Villegas of the ‘Twelve-point theorem’ [10],
based on the properties of the holomorphic function (modular form) ∆(z), can also be used as the basis of a proof of The-
orem 1. The variety of proofs and methods applied are perhaps an indication that this result deserves a further exploration
so the paper ends with some open questions.

2. Introductory definitions and remarks

2.1. Unimodular sequences

A sequence L = u1u2 . . . ud of lattice vectors is called unimodular if {ui, ui+1} is a basis of the lattice Z2 for each i or
equivalently if det(ui, ui+1) ∈ {−1, +1} for each i = 1, . . . , d − 1. Geometrically this condition means that for each i the
triangle Ouiui+1 does not contain lattice points aside from the vertices.

A unimodular sequence L = u1u2 . . . ud is called cyclic if det(ud, u1) ∈ {−1, +1}. A cyclic unimodular sequence L (of
length d) naturally defines a d-periodic unimodular sequenceW = . . . LLL . . . = . . . u−1u0u1u2 . . . udud+1 . . . where ui = uj
if i ≡ j (mod d).

2.2. Local and global µ-invariants

The invariants µ(L) and ν(L) of a cyclic unimodular sequence L = u1 . . . ud are already introduced in Theorem 1 as the
sums

µ(L) =

d
i=1

µ(ui−1, ui, ui+1) ν(L) =

d
i=1

ν(ui, ui+1). (2)

The µ-invariant of a unimodular sequence (u, v, w) is described as the unique integer a = µ(u, v, w) determined by the
equation

det(u, v)u + det(v, w)w + av = 0. (3)

Togetherwith the associated ν-invariant ν(u, v) := det(u, v) this is a basic discrete angle invariant of (planar)modular lattice
geometry. Higher dimensional analogues of these invariants are introduced and discussed in Section 6 (see Definition 16).

A possible ambiguity arises if L = u1u2u3 is a cyclic unimodular sequence. For this reason the term ‘µ-invariant’ is re-
served for the number µ(u1, u2, u3) (local µ-invariant) while µ(L) = µ(u1, u2, u3) + µ(u2, u3, u1) + µ(u3, u1, u2) is the
corresponding global µ-invariant.

2.3. Rotation number

Let P = P(a1, . . . , ad) be a closed, oriented, polygonal curve in the planewith points ai as vertices and ai, ai+1 = [ai, ai+1]

as oriented edges (ad+1 := a1). If the origin O is not on P it has a rotation number (or winding number) defined by,

Rot(P) =
1
2π

d
i=1

ν(ai, ai+1)̸ (aiOai+1) (4)

where ν(ai, ai+1) is the sign of the determinant det(ai, ai+1) and ̸ (aiOai+1) is the measure of the angle aiOai+1.
Given a cyclic, unimodular sequence L = u1u2 . . . ud the associated closed unimodular polygon is PL = P(u1, u2, . . . , ud).

The rotation number Rot(L) of L is by definition the rotation number of the polygonal curve PL.
It is well known that Rot(P) can be defined with the aid of elementary homology theory. We do not need this definition

here but we shall occasionally use the term unimodular cycle [L] to describe the collection {uiui+1}
d
i=1 of the oriented edges

of PL which may be written also as a formal sum,

[L] :=
−−→u1u2 +

−−→u2u3 + · · · +
−−−→ud−1ud +

−−→udu1.

In this context the decomposition [L] = [L1]+[L2], that appears in Section 4, simply indicates that [L] = [L1]∪[L2] is a union
of sets with signed elements (multisets) where the elements with different sign, i.e. the edges with different orientation, are
supposed to cancel out. The following proposition is, in light of the Eq. (4), an immediate consequence.
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