Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Anti-Ramsey number of matchings in hypergraphs

Lale Özkahya^{a,b}, Michael Young^{a,*,1}

^a Department of Mathematics, Iowa State University, Ames, IA 50011, USA
 ^b Department of Mathematics, Hacettepe University, Beytepe, Ankara 06800, Turkey

ARTICLE INFO

Article history: Received 1 August 2011 Received in revised form 15 June 2013 Accepted 21 June 2013 Available online 12 July 2013

Keywords: Anti-Ramsey Rainbow Matching Hypergraph

ABSTRACT

A *k*-matching in a hypergraph is a set of *k* edges such that no two of these edges intersect. The *anti-Ramsey number* of a *k*-matching in a complete *s*-uniform hypergraph \mathcal{H} on *n* vertices, denoted by $\operatorname{ar}(n, s, k)$, is the smallest integer *c* such that in any coloring of the edges of \mathcal{H} with exactly *c* colors, there is a *k*-matching whose edges have distinct colors. The *Turán number*, denoted by $\operatorname{ex}(n, s, k)$, is the the maximum number of edges in an *s*-uniform hypergraph on *n* vertices with no *k*-matching. For $k \geq 3$, we conjecture that if n > sk, then $\operatorname{ar}(n, s, k) = \operatorname{ex}(n, s, k - 1) + 2$. Also, if n = sk, then $\operatorname{ar}(n, s, k) = \left\{ \begin{array}{c} \operatorname{ex}(n, s, k - 1) + 2 \\ \operatorname{ex}(n, s, k - 1) + s + 1 \\ \operatorname{if} k \geq c_s \end{array} \right\}$, where c_s is a constant dependent on *s*. We prove this conjecture for k = 2, k = 3, and sufficiently large *n*, as well as provide upper and lower bounds. \mathbb{O} 2013 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph \mathcal{H} consists of a set $V(\mathcal{H})$ of vertices and a family $\mathcal{E}(\mathcal{H})$ of nonempty subsets of $V(\mathcal{H})$ called edges of \mathcal{H} . If each edge of \mathcal{H} has exactly *s* vertices then \mathcal{H} is *s*-uniform. A complete *s*-uniform hypergraph is a hypergraph whose edge set is the set of all *s*-subsets of the vertex set. A matching is a set of edges in a (hyper)graph in which no two edges have a common vertex. We call a matching with *k* edges a *k*-matching and a matching containing all vertices a perfect matching. In an edge-coloring of a (hyper)graph \mathcal{H} , a sub(hyper)graph $\mathcal{F} \subseteq \mathcal{H}$ is rainbow if all edges of \mathcal{F} have distinct colors. The anti-Ramsey number of a graph *G*, denoted by ar(*G*, *n*), is the minimum number of colors needed to color the edges of K_n so that, in any coloring, there exists a rainbow copy of *G*. The Turán number of a graph *G*, denoted by ex(*n*, *G*), is the maximum number of edges in a graph on *n* vertices that does not contain *G* as a subgraph. The anti-Ramsey number of a *k*-matching, denoted by ar(*n*, *s*, *k*), is the minimum number of colors needed to color the edges of a complete *s*-uniform hypergraph on *n* vertices so that there exists a rainbow *k*-matching in any coloring. The Turán number of a *k*-matching, denoted by ex(*n*, *s*, *k*), is the maximum number of edges in an *s*-uniform hypergraph on *n* vertices that contains no *k*-matching.

In 1973, Erdős, Simonovits, and Sós [6] showed that $ar(K_p, n) = ex(n, K_{p-1}) + 2$ for sufficiently large *n*. More recently, Montellano-Ballesteros and Neumann-Lara [10] extended this result to all values of *n* and *p* with $n > p \ge 3$. A history of results and open problems on this topic was given by Fujita, Magnant, and Ozeki [8]. The Turán number ex(n, 2, k) was determined by Erdős and Gallai [4] as

$$ex(n, 2, k) = \max\left\{ \binom{2k-1}{2}, \binom{k-1}{2} + (k-1)(n-k+1) \right\}$$

for $n \ge 2k$ and $k \ge 1$. Schiermeyer [11] proved that ar(n, 2, k) = ex(n, 2, k - 1) + 2 for $k \ge 2$ and $n \ge 3k + 3$. Later, Chen, Li, and Tu [2] and independently Fujita, Kaneko, Schiermeyer, and Suzuki [7] showed that ar(n, 2, k) = ex(n, 2, k - 1) + 2

CrossMark

^{*} Corresponding author.

E-mail addresses: ozkahya@illinoisalumni.org (L. Özkahya), myoung@iastate.edu (M. Young).

¹ Research supported by DMS 0946431.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.06.015

for $k \ge 2$ and $n \ge 2k + 1$. The value

$$\operatorname{ar}(n, 2, k) = \begin{cases} \operatorname{ex}(n, 2, k - 1) + 2 & \text{if } k < 7\\ \operatorname{ex}(n, 2, k - 1) + 3 & \text{if } k \ge 7 \end{cases}$$

was determined for n = 2k in [2] and by Haas and the second author [9], independently.

The same ideas implying a lower bound for the anti-Ramsey number of graphs given in [6] provide a lower bound for ar(n, s, k).

Proposition 1. For all n, $ar(n, s, k) \ge ex(n, s, k - 1) + 2$.

Proof. Let \mathcal{H} be a complete *s*-uniform hypergraph on *n* vertices. Let \mathcal{G} be a subhypergraph of \mathcal{H} with ex(n, s, k - 1) edges such that \mathcal{G} does not contain a (k - 1)-matching. Color each edge of \mathcal{G} with distinct colors and color all of the remaining edges of \mathcal{H} the same, using an additional color. If there is a rainbow *k*-matching in this coloring, then it uses k - 1 edges from \mathcal{G} which is a contradiction. Therefore, this coloring has no rainbow *k*-matching. \Box

For *k*-matchings the Turán number ex(n, s, k) is still not known for $k \ge 3$ and $s \ge 3$. Erdős [3] conjectured in 1965 the value of ex(n, s, k) as follows. Let g(n, s, k - 1) be the number of *s*-sets of $\{1, \ldots, n\}$ that intersect $\{1, \ldots, k - 1\}$. By definition, $g(n, s, k - 1) = {n \choose s} - {n-k+1 \choose s}$.

Conjecture 2 (Erdős [3]). For $n \ge sk$, $s \ge 2$, and $k \ge 2$,

$$\exp(n, s, k) = \max\left\{ \binom{sk-1}{s}, g(n, s, k-1) \right\}.$$
(1)

Erdős, Ko, and Rado [5] proved that $ex(n, s, 2) = \binom{n-1}{s-1} = g(n, s, 1)$ for $n \ge 2s$. This conjecture is true for s = 2, as shown by Erdős and Gallai [4]. Erdős [3] proved that

$$ex(n, s, k) = g(n, s, k-1) = {\binom{n}{s}} - {\binom{n-k+1}{s}}$$
(2)

for sufficiently large *n*. Later, Bollobás, Daykin, and Erdős [1] sharpened this result by showing that (2) holds for $n > 2s^{3}(k-1)$.

In Section 2, we provide bounds on ar(n, s, k) and show that anti-Ramsey number and Turán number of a *k*-matching differ at most by a constant. In Section 3, we determine the value of ar(n, s, k) for $k \in \{2, 3\}$ and show that ar(n, s, k) = ex(n, s, k - 1) + 2 for $k \in \{2, 3\}$ and n > ks. The claim also holds for n = ks when k = 3. We conjecture that this is true for all k.

Conjecture 3. Let $k \ge 3$. If n > sk, then ar(n, s, k) = ex(n, s, k - 1) + 2. Also, if n = sk, then

$$\operatorname{ar}(n, s, k) = \begin{cases} \operatorname{ex}(n, s, k-1) + 2 & \text{if } k < c_s \\ \operatorname{ex}(n, s, k-1) + s + 1 & \text{if } k \ge c_s \end{cases}$$

where c_s is a constant dependent on s.

Finally, in Section 4, we give the exact value of ar(n, s, k) when *n* is sufficiently large.

We introduce some notation for hypergraphs used in the remaining sections. For a set X, $\binom{X}{s}$ denotes all *s*-subsets of X. We call a hypergraph an *intersecting family* if every two edges intersect. For a vertex x in a hypergraph \mathcal{H} , we call the number of edges of \mathcal{H} containing x the *degree* of x written $deg_{\mathcal{H}}(x)$. The maximum degree of a hypergraph \mathcal{H} is denoted by $\Delta(\mathcal{H})$.

2. General bounds on the anti-Ramsey number

The following constructions provide a lower bound for ar(n, s, k) in Corollary 6.

Construction 4. Let \mathcal{H} be the complete s-uniform hypergraph with vertex set $\{v_1, \ldots, v_n\}$, where n = sk. Let $A = \{v_1, \ldots, v_{s+1}\}$ and $c = \binom{n-s-1}{s} + s$. Define a c-coloring h of $\mathcal{E}(\mathcal{H})$ as follows. For any edge $E \in \mathcal{E}$, if $v_1 \in E$, then let $h(e) = \min\{i : v_i \notin E\}$. If $E \cap A \neq \emptyset$ but $v_1 \notin E$, then let $h(E) = \min\{i : v_i \in E\}$. Assign distinct other colors to the remaining edges.

Assume there is a rainbow perfect matching \mathcal{M} in this coloring. Since n = sk, at least two edges of \mathcal{M} intersect A. Let E be the edge of \mathcal{M} that contains v_1 . Let $j = \min\{i : v_i \notin V(E)\}$ and let E' be the edge of \mathcal{M} that contains v_j . By the above construction, E and E' both have color j.

Download English Version:

https://daneshyari.com/en/article/4647579

Download Persian Version:

https://daneshyari.com/article/4647579

Daneshyari.com