

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5

Oleg V. Borodin a,b, Anna O. Ivanova c,*

- ^a Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
- ^b Novosibirsk State University, Novosibirsk 630090, Russia
- ^c Institute of Mathematics of Ammosov North-Eastern Federal University, Yakutsk, 677891, Russia

ARTICLE INFO

Article history: Received 27 December 2012 Received in revised form 22 April 2013 Accepted 24 April 2013 Available online 18 May 2013

Keywords: Planar graph Plane map Structural property Star Weight

ABSTRACT

Lebesgue (1940) [13] proved that each plane normal map M_5 with minimum degree 5 has a 5-vertex such that the degree-sum (the weight) of its every four neighbors is at most 26. In other words, every M_5 has a 4-star of weight at most 31 centered at a 5-vertex. Borodin–Woodall (1998) [3] improved this 31 to the tight bound 30.

We refine the tightness of Borodin–Woodall's bound 30 by presenting six M_5 s such that (1) every 4-star at a 5-vertex in them has weight at least 30 and (2) for each of the six possible types (5,5,5,10), (5,5,6,9), (5,5,7,8), (5,6,6,8), (5,6,7,7), and (6,6,6,7) of 4-stars with weight 30, the 4-stars of this type at 5-vertices appear in precisely one of these six M_5 s.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree of a vertex v or a face f is the number of edges incident with v or f, where loops and cut-edges are counted twice, respectively. A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but the degree of each vertex and face is at least three.

The degree of a vertex v is denoted by d(v). A vertex v is a k-vertex if d(v) = k. A k^+ -vertex (k^- -vertex) is one with degree at least k (at most k). An NPM with minimum degree 5 is denoted by M_5 . The weight w(H) of a subgraph H of a map M is the degree-sum of the vertices of H in M. A k-star $S_k(v)$ with the central vertex v is minor if $d(v) \le 5$. All stars considered in this note are minor. A minor star $S_k(v)$ with rays v_1, \ldots, v_k is a k-star of type (p_1, \ldots, p_k) or a (p_1, \ldots, p_k) -star if $\{d(v_1), \ldots, d(v_k)\}$ is majorized by the vector (p_1, \ldots, p_k) with $(p_1 \le \ldots P_k)$. By $w(S_k)$ we denote the minimum integer W such that the weight of every minor k-star in a given NPM is at most W.

In 1904, Wernicke [14] proved that every M_5 has a 5-vertex adjacent to a 6⁻-vertex. This result was strengthened by Franklin [8] in 1922 to the existence of a 5-vertex with two 6⁻-neighbors. In 1940, Lebesgue [13, p. 36] gave an approximate description of the neighborhoods of 5-vertices in M_5 s. In particular, this description implies the results in [14,8] and shows that there is a 5-vertex with three 8⁻-neighbors. From Lebesgue [13, p. 36] we can easily deduce the following rough description of minor 5-stars in M_5 .

E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova).

^{*} Corresponding author.

Theorem 1 (Lebesgue [13]). Every normal plane map with minimum degree 5 has a minor 5-star of one of the following types¹:

```
(5, 5, 5, 7, 41).
                      (5, 5, 6, 7, 27)^*.
                                           (5, 6, 6, 7, 11).
(5, 5, 5, 8, 23),
                     (5, 5, 6, 8, 15)^*
                                           (5, 6, 6, 8, 10),
(5, 5, 5, 9, 17),
                     (5, 5, 6, 9, 11),
                                           (5, 6, 7, 7, 8),
(5, 5, 5, 10, 14),
                     (5, 5, 7, 7, 13),
                                           (6, 6, 6, 6, 11),
(5, 5, 5, 11, 13),
                     (5, 5, 7, 8, 10),
                                           (6, 6, 6, 7, 9),
(5, 5, 6, 6, \infty).
                      (5, 6, 6, 6, 17).
                                           (6, 6, 7, 7, 7).
```

The bounds $w(S_1) \le 11$ (Wernicke [14]) and $w(S_2) \le 17$ (Franklin [8]) for all M_5 s are tight. It follows from Theorem 1 that $w(S_3) \le 24$ and $w(S_4) \le 31$ for every M_5 , which was improved much later to the following tight bounds: $w(S_3) \le 23$ (Jendrol'-Madaras [11]) and $w(S_4) \le 30$ (Borodin-Woodall [3]). Note that $w(S_3) \le 23$ easily implies $w(S_2) \le 17$ and immediately follows from $w(S_4) \le 30$ (it suffices to delete a vertex of maximum degree from a minor star of the minimum weight).

Jendrol' and Madaras [11] completely described minor 3-stars in M_5 s as follows.

Theorem 2 (Jendrol'–Madaras [11]). Every normal plane map with minimum degree 5 has a minor 3-star of one of the types (6, 6, 6) and (5, 6, 7), where each parameter is tight.

The purpose of our note is to give a similar description for minor 4-stars that implies Theorem 2 and shows that the tight bound $w(S_4) \le 30$ in Borodin–Woodall [3] is attained by any (p_1, p_2, p_3, p_4) -star with $p_1 + p_2 + p_3 + p_4 = 30$.

Theorem 3. Every normal plane map with minimum degree 5 has a minor 4-star of one of the following types:

```
(Ta) (6, 6, 6, 7);

(Tb) (5, 6, 7, 7);

(Tc) (5, 6, 6, 8);

(Td) (5, 5, 7, 8);

(Te) (5, 5, 6, 9);

(Tf) (5, 5, 5, 10).
```

Moreover, each parameter in (Ta)-(Tf) is tight, as shown by certain plane triangulations without loops and multiple edges.

In other words, we refine the tightness of Borodin–Woodall's bound 30 by presenting six M_5 s such that (1) every minor 4-star in them has weight at least 30 and (2) all minor 4-stars of each of the six possible types of 4-stars with w=30 appear in precisely one of these six M_5 s.

The following problem arises naturally from Lebesgue's Theorem 1 and subsequent results in [3,11].

Problem 1. Find a complete description of 5-stars centered at 5-vertices in normal plane maps with minimum degree 5.

So Problem 1 asks for a best possible version of Lebesgue's Theorem 1 (it is not excluded that there are more than one such versions, but each of them should imply Theorem 3). Differently put, Problem 1 consists in decreasing the vector

```
\Lambda_{18} = (41, 23, 17, 14, 13, \infty, 27, 15, 11, 13, 10, 17, 11, 10, 8, 11, 9, 7)
```

of the fifth components of the 18 terms in Theorem 1 to a minimal vector (or vectors).

In fact, only one term, $(5,5,6,6,\infty)$, in Theorem 1 is known to us to be tight. Take three concentric n-cycles $C^i = v_1^i \dots v_N^i$, where N is large and $1 \le i \le 3$, and join C^2 with C^1 by edges $v_j^2 v_j^1$ and $v_j^2 v_{j+1}^1$ whenever $1 \le j \le N$ (addition modulo N). The same is done with C^2 and C^3 . Finally, join all vertices of C^1 to a new N-vertex and do the same with C^3 . As a result, every 5-vertex is adjacent to an N-vertex, two 5-vertices, and two 6-vertices.

Note that Jendrol' and Madaras [11] suggested a similar construction in which every 5-vertex is adjacent to an N-vertex and four 5-vertices and which shows that $w(S_5)$ is unbounded in M_5 s.

On the other hand, it follows from Theorem 1 that if an M_5 has no (5, 5, 6, 6)-stars, then $w(S_5) \le 68$. Recently, Borodin, Ivanova, and Jensen [7] lowered this bound of 68 to 55, but further progress in this direction is not excluded (the lower bound in [7] is 48).

For arbitrary NPMs, the following results concerning (d-2)-stars at d-vertices, $d \le 5$, are known. Van den Heuvel and McGuinness [10] proved (in particular) that there is an $S_k(v)$ such that either $w(S_1(v)) \le 14$ with d(v) = 3, or $w(S_2(v)) \le 22$ with d(v) = 4, or $w(S_3(v)) \le 29$ with d(v) = 5. Balogh et al. [1] proved that there is a S^- -vertex adjacent to at most two 11^+ -vertices. Harant and Jendrol' [9] strengthened these results by proving (in particular) that we always have an $S_k(v)$ such that either $w(S_1(v)) \le 13$ with d(v) = 3, or $w(S_2(v)) \le 19$ with d(v) = 4, or $w(S_3(v)) \le 23$ with d(v) = 5. Recently, we obtained [6] an exhaustive description of minor (d-2)-stars in all NPMs, which refines the description given in Harant–Jendrol' [9].

For the more difficult problem of describing (d-1)-stars at d-vertices, $d \le 5$, in all NPMs, only approximate or partial results have been achieved as yet; see Borodin et al. [4,5] and a recent survey by Jendrol' and Voss [12].

 $^{^{1}}$ There are misprints in Lebesgue [13, p. 36] concerning the two terms labeled by asterisk.

Download English Version:

https://daneshyari.com/en/article/4647657

Download Persian Version:

https://daneshyari.com/article/4647657

<u>Daneshyari.com</u>