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a b s t r a c t

In this paper we prove that the study of the hyperbolicity on graphs can be reduced to
the study of the hyperbolicity on simpler graphs. In particular, we prove that the study of
the hyperbolicity on a graph with loops and multiple edges can be reduced to the study of
the hyperbolicity in the same graph without its loops and multiple edges; we also prove
that the study of the hyperbolicity on an arbitrary graph is equivalent to the study of the
hyperbolicity on a 3-regular graph obtained from it by adding some edges and vertices.
Moreover, we study how the hyperbolicity constant of a graph changes upon adding or
deleting finitely or infinitely many edges.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of mathematical properties of Gromov hyperbolic spaces and their applications is a topic of recent and
increasing interest in graph theory; see, for instance, [2,3,6–9,14–16,18,19,21–24,26–29].

The theory of Gromov’s spaces was used initially for the study of finitely generated groups, where it was demonstrated to
have a practical importance. This theory was applied principally in the study of automatic groups (see [20]), that play a role
in sciences of computation. Another important application of these spaces is in secure transmission of information on the
internet (see [14–16]). Furthermore, the hyperbolicity plays an important role in the spread of viruses through the network
(see [14,16]). The hyperbolicity is also useful in the study of DNA data (see [6]).

In recent years several researchers have been interested in showing that metrics used in geometric function theory are
Gromov hyperbolic. For instance, the Gehring–Osgood j-metric is Gromov hyperbolic; and the Vuorinen j-metric is not
Gromov hyperbolic except in a punctured space (see [11]). The study of Gromov hyperbolicity in Riemann surfaces with
Poincaré metrics is the subject of [1,4,12,13,22,24–26]. In [5, Section 1.3] it is observed that the hyperbolicity of a geodesic
metric space is equivalent to the hyperbolicity of a graph related to it (see also [22,24,26,28] and Theorem 29 in this paper).
Hence, establishing hyperbolicity criteria for graphs will be of interest to us.

In our study on hyperbolic graphs we use the notation of [10]. Let (X, d) be a metric space and let γ : [a, b] −→ X be a
continuous function. We say that γ is a geodesic if L(γ |[t,s]) = d(γ (t), γ (s)) = |t − s| for every s, t ∈ [a, b], where L denotes
the length of a curve. We say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic joining x and y;
we denote by [xy] any such geodesic (since we do not require uniqueness of geodesics, this notation is ambiguous, but it is
convenient). It is clear that every geodesic metric space is path-connected.
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In order to consider a graph G as a geodesic metric space, if we use the notation uv for the edge joining the vertices u and
v, we must identify any edge uv ∈ E(G) with the real interval [0, l] (if l := L(uv)); therefore, any point in the interior of any
edge is a point of G and, if we consider the edge uv as a graph with just one edge, then it is isometric to [0, l]. A connected
graph G is naturally equipped with a distance defined on its points, induced by taking shortest paths in G. Then, we see G as
a metric graph.

Throughout the paper we allow loops and multiple edges in the graphs; we also allow edges of arbitrary lengths. We
always consider graphs which are connected and locally finite (i.e., in each ball there are just a finite number of edges).
These properties guarantee that the graphs are geodesic metric spaces.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides Jj ⊆ X , we say that J is δ-thin if for every
x ∈ Ji we have that d(x, ∪j≠i Jj) ≤ δ. We denote by δ(J) the sharp thin constant of J , i.e., δ(J) := inf{δ ≥ 0 : J is δ-thin}. If
x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is
δ-hyperbolic (or satisfies the Rips condition with constant δ) if every geodesic triangle in X is δ-thin. We denote by δ(X) the
sharp hyperbolicity constant of X , i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X}. We say that X is hyperbolic if X is
δ-hyperbolic for some δ ≥ 0. If X is hyperbolic, then δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic}.

There are several definitions of Gromov hyperbolicity (see, e.g., [5,10]). These different definitions are equivalent in the
sense that if X is δA-hyperbolic with respect to the definition A, then it is δB-hyperbolic with respect to the definition B for
some constant δB. However, for a fixed δ ≥ 0, the set of δ-hyperbolic graphs with respect to the definition A is different, in
general, from the set of δ-hyperbolic graphs with respect to the definition B. We have chosen this definition since it has a
deep geometric meaning (see, e.g., [10]).

Some authors (see, e.g., [6]) study Gromov hyperbolicity for graphs G such that every edge has length 1; in this context,
they define δ(G) as

sup{δ(T ) : T is a geodesic triangle in Gwith vertices in V (G)}.

This definition is equivalent to our definition if every edge in G has length 1. However, if we want to deal with graphs with
edges of arbitrary lengths, we must consider geodesic triangles with vertices in G.

The following are interesting examples of hyperbolic spaces. The real line R is 0-hyperbolic: in fact, any point of a
geodesic triangle in the real line belongs to two sides of the triangle simultaneously, and therefore we can conclude that R is
0-hyperbolic. The Euclidean plane R2 is not hyperbolic: it is clear that equilateral triangles can be drawn with arbitrarily
large diameter, so R2 with the Euclidean metric is not hyperbolic. This argument also proves that a normed vector space is
hyperbolic if and only it has dimension 1. Every arbitrary length metric tree is 0-hyperbolic: in fact, all points of a geodesic
triangle in a tree belong simultaneously to two sides of the triangle.

Those spaces X with δ(X) = 0 are precisely the metric trees, and the hyperbolicity constant of a geodesic metric space
can be viewed as a measure of how ‘‘tree-like’’ the space is. Every bounded metric space X is (diam X)-hyperbolic. Every
simply connected complete Riemannian manifold with sectional curvature verifying K ≤ −c2 < 0 is hyperbolic. See [5,10]
for more background and further results.

We would like to point out that deciding whether or not a space is hyperbolic is usually very difficult. Notice that, first
of all, we have to consider an arbitrary geodesic triangle T , and compute the minimum distance from an arbitrary point P
of T to the union of the other two sides of the triangle to which P does not belong. And then we have to take the supremum
over all the possible choices for P and then over all the possible choices for T . This means that if our space is, for instance,
an n-dimensional manifold and we select two points P and Q on different sides of a triangle T , the function F that measures
the distance between P and Q is a (3n+2)-variable function (3n variables describe the three vertices of T and two variables
describe the points P and Q in the closed curve given by T ). In order to prove that our space is hyperbolic we would have
to take the minimum of F over the variable that describes Q , and then the supremum over the remaining 3n + 1 variables,
or at least to prove that it is finite. Without disregarding the difficulty of solving a (3n + 2)-variable minimax problem,
notice that the main obstacle is that we do not even know in an approximate way the location of the geodesics in the
space.

The study of hyperbolic graphs is an interesting topic since, as we have seen, the hyperbolicity of many geodesic metric
spaces is equivalent to the hyperbolicity of some graphs related to them. The main aim of this paper is to show that it
suffices to study the hyperbolicity of graphs of a very special kind: 3-regular graphs without loops and multiple edges (see
Theorems 6, 8 and 19). One way to get around the appearance of loops and multiple edges is just to insert new points in the
middle of relevant edges and loops, obtaining a graph with more vertices than the original one; however, we choose a more
natural and difficult approach since Theorem 6 (respectively, Theorem 8) relates the hyperbolicity constant of a graph with
the hyperbolicity constant of the graph obtained by deleting its loops (respectively, obtained by replacing each multiple
edge by just one edge).

2. Hyperbolicity, loops and multiple edges

A loop is an edge that connects a vertex to itself and amultiple edge is the set of all edges (at least two) which are incident
to the same two vertices. We prove in this section that, in order to study Gromov hyperbolicity, it suffices to consider graphs
without loops and multiple edges.
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