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a b s t r a c t

A set of vertices W resolves a graph G if every vertex is uniquely determined by its
coordinate of distances to the vertices in W . The minimum cardinality of a resolving set
of G is called themetric dimension of G. In this paper, we consider a graphwhich is obtained
by the lexicographic product between two graphs. The lexicographic product of graphs
G and H , which is denoted by G ◦ H , is the graph with vertex set V (G) × V (H) =

{(a, v) |a ∈ V (G) , v ∈ V (H)}, where (a, v) is adjacent to (b, w) whenever ab ∈ E (G),
or a = b and vw ∈ E (H). We give the general bounds of the metric dimension of a
lexicographic product of any connected graph G and an arbitrary graph H . We also show
that the bounds are sharp.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs G are finite and simple. We denote by V the vertex set of G and by E the edge set
of G. The distance between two vertices u, v ∈ V (G), denoted by d (u, v), is the length of a shortest u − v path in G. Let
W = {w1, w2, . . . , wk} be an ordered subset of V (G). For v ∈ V (G), a representation of v with respect toW is defined as the
k-tuple r (v|W ) = (d (v, w1) , d(v, w2), . . . , d (v, wk)). The set W is called a resolving set of G if every two distinct vertices
x, y ∈ V (G) satisfy r (x|W ) ≠ r (y|W ). A basis of G is a resolving set of G with the minimum cardinality, and the metric
dimension of G refers to its cardinality and is denoted by β (G).

Themetric dimension problemswere first studied by Harary andMelter [6], and independently by Slater [18,19]. Khuller
et al. [11] studied the metric dimension motivated by the robot navigation in a graph space. A resolving set for a graph
corresponds to the presence of distinctively labeled ‘‘landmark’’ nodes in the graph. It is assumed that a robot can detect the
distance to each node of the landmarks, and hence uniquely determine its location in the graph.

Garey and Johnson [5], and also Khuller et al. [11], showed that determining the metric dimension of an arbitrary graph
is an NP-complete problem. However, Chartrand et al. [3] have obtained some results as follows.

Theorem 1 ([3]). Let G be a connected graph of order n ≥ 2. Then

1. β (G) = 1 if and only if G = Pn.
2. β (G) = n − 1 if and only if G = Kn.
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3. For n ≥ 3, β (Cn) = 2.
4. β (G) = n − 2 if and only if G is either Kr,s for r, s ≥ 1, or Kr + Ks for r ≥ 1, s ≥ 2, or Kr + (K1 ∪ Ks) for r, s ≥ 1.

Many researchers have also considered this problem for certain particular classes of graphs, such as trees [3,6,11], fans [2],
wheels [1,2,17], complete n-partite graphs [3,16], unicyclic graphs [14], grids [13], honeycomb networks [12], circulant
networks [15], Cayley graphs [4], graphs with pendants [9], amalgamation of cycles [10], and Jahangir graphs [20].

There are also some results of the metric dimension problem for graphs resulting from operations on graphs. We recall
that the joint graph of G and H , which is denoted by G+H , is a graph with V (G+H) = V (G) ∪ V (H) with V (G) ∩ V (H) = ∅

and E(G + H) = E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈ V (H)}. Some results on certain joint product graphs have been proved in
[1,2,17].

Caceres et al. [2], Khuller et al. [11], and Melter et al. [13] have determined the metric dimension of graphs which are
obtained by the Cartesian product of two or more graphs. Some graphs which are constructed by the corona product of two
graphs have been studied in [9,8,21]. In this paper, we study the metric dimension of the lexicographic product of connected
graph G and an arbitrary graph H . We give general bounds of the metric dimension and also show that the bounds are
sharp.

2. The main results

The lexicographic product of graphs G and H , which is denoted by G ◦ H [7], is the graph with vertex set V (G) × V (H) =

{(a, v) |a ∈ V (G) , v ∈ V (H)}, where (a, v) is adjacent to (b, w) whenever ab ∈ E (G), or a = b and vw ∈ E (H). For any
vertex a ∈ V (G) and b ∈ V (H), we define the vertex set H (a) = {(a, v) |v ∈ V (H)} and G (b) = {(v, b) |v ∈ V (G)}.

Let G be a connected graph with |V (G)| ≥ 2 and H be an arbitrary graph containing k components H1,H2, . . . ,Hk and
|V (H)| ≥ 2. For a ∈ V (G) and 1 ≤ i ≤ k, we define the vertex set Hi(a) = {(a, v) | v ∈ V (Hi)}. We obtain the following
propositions.

Proposition 1. Let a and b be two distinct vertices in G. Every two different vertices x, y ∈ H (a) satisfy d (x, z) = d (y, z)
whenever z ∈ H (b).

Proof. Let V (H) = {h1, h2, . . . , h|V (H)|}. Let x = (a, hp), y = (a, hq), and z = (b, hr) where p, q, r ∈ {1, 2, . . . , |V (H)|} and
p ≠ q. Note that, by the definition of G ◦ H , every vertex of H(u) is adjacent to every vertex of H(v) for uv ∈ E(G). Now, for
a ∈ V (G), let ua be a projection of all vertices of H(a). Let Q be a graph where V (Q ) = {ua | a ∈ V (G)} and uaub ∈ E(Q )
whenever ab ∈ E(G). So, the distance between x and z, d(x, z), in G ◦H is equal to the distance between ua and ub, d(ua, ub),
in Q . Since a vertex y is also projected to ua, we obtain that d(y, z) = d(ua, ub) = d(x, z). �

Proposition 2. For a ∈ V (G) and i, j ∈ {1, 2, . . . , k}with i ≠ j, every two different vertices x, y ∈ Hj(a) satisfy d(x, z) = d(y, z)
whenever z ∈ Hi(a).

Proof. Let b ∈ V (G) and ab ∈ E(G). Since all vertices of H(a) are adjacent to all vertices of H(b), for w ∈ H(b), we obtain
that d(x, z) = d(x, w) + d(w, z) = 2 = d(y, w) + d(w, z) = d(y, z). �

By considering Propositions 1 and 2, in order to find a resolving set of G◦H wemust find a subset Si(a) ⊆ Hi (a) for every
i ∈ {1, 2, . . . , k} and |V (Hi)| ≥ 2, such that every two distinct vertices x, y ∈ Hi (a) satisfy r (x|Si(a)) ≠ r (y|Si(a)), which
can be seen in the following lemma.

Lemma 1. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
and |V (H)| ≥ 2. Let W be a basis of G ◦ H. For any vertex a ∈ V (G), if Si(a) = W ∩ Hi(a) for every i ∈ {1, 2, . . . , k} where
V (Hi) ≥ 2, then Si(a) ≠ ∅. Moreover, if Bi is a basis of Hi, then |Si(a)| ≥ |Bi|.

Proof. Suppose that there exists a ∈ V (G) such that there exists i ∈ {1, 2, . . . , k} which is satisfying |V (Hi)| ≥ 2 and
Si(a) = ∅. Since |V (Hi)| ≥ 2, by Propositions 1 and 2, there exist two different vertices (a, x), (a, y) ∈ Hi(a) such that
r((a, x)|W ) = r((a, y)|W ), a contradiction.

Now, suppose that Si(a) = {(a, s1) , (a, s2) , . . . , (a, st)} where t < |Bi| for some basis Bi of Hi. Let us consider S ′
=

{s1, s2, . . . , st} subset ofV (Hi). Since
S ′
 < |Bi|, there exist twodistinct vertices x, y ∈ V (Hi) such that r


x|S ′


= r


y|S ′


. So,

for every p ∈ {1, 2, . . . , t}, we have d

x, sp


= d


y, sp


. Note that, for every two distinct vertices u, v ∈ V (Hi), if d(u, v) ≤ 2

then d((a, u), (a, v)) = d(u, v), otherwise d((a, u), (a, v)) = 2. Thus we obtain d

(a, x) ,


a, sp


= d


(a, y) ,


a, sp


, and

so r ((a, x) |Si(a)) = r ((a, y) |Si(a)), a contradiction. �

For a graph H containing singleton components, we obtain the lemma below.

Lemma 2. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
where 1 ≤ |V (H1)| ≤ |V (H2)| ≤ · · · ≤ |V (Hk)| and |V (H)| ≥ 2. Let W be a basis of G◦H. For any vertex a ∈ V (G), let W (a) =

W ∩H(a). If H contains m ≥ 1 singleton components, thenW (a) contains at least m−1 vertices of H1(a)∪H2(a)∪· · ·∪Hm(a).

Proof. For m = 1, let a ∈ V (G) and x ∈ V (H1). Let W be a resolving set of H2(a) ∪ H3(a) ∪ · · · ∪ Hk(a). Note that, for a
vertex u ∈ V (Hi) and v ∈ V (H) \ V (Hi) where i ∈ {1, 2, . . . , k}, d((a, u), (a, v)) = 2. So, r((a, x) | W ) = (2, 2, . . . , 2).
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