

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the *c*-strong chromatic number of *t*-intersecting hypergraphs

Ping Ngai Chung

Department of Mathematics, MIT, Cambridge, MA 02139-4307, United States

ARTICLE INFO

Article history:
Received 8 September 2012
Received in revised form 3 February 2013
Accepted 11 February 2013
Available online 1 March 2013

Keywords: Intersecting hypergraph Weak coloring Semi-strong coloring Semi-strong chromatic number Shifting

ABSTRACT

For a fixed $c \geq 2$, a c-strong coloring of the hypergraph G is a vertex coloring such that each edge e of G covers vertices with at least $\min\{c, |e|\}$ distinct colors. A hypergraph is t-intersecting if the intersection of any two of its edges contains at least t vertices. This paper addresses the question: what is the minimum number of colors which suffices to c-strong color any t-intersecting hypergraph? We first show that the number of colors required to c-strong color a hypergraph of size n is $O(\sqrt{n})$. Then we prove that we can use finitely many colors to 3-strong color any 2-intersecting hypergraph. Finally, we show that 2c-1 colors are enough to c-strong color any shifted (c-1)-intersecting hypergraph for $t \geq c$. Both chromatic numbers are optimal and match conjectured statements in which the shifted condition is removed.

© 2013 Published by Elsevier B.V.

1. Introduction

Graph and hypergraph coloring problems have a long history in combinatorics. Typically, two main types of vertex colorings of hypergraphs are considered. One is *weak coloring*, which is a vertex coloring such that none of the edges are monochromatic. Another type is *strong coloring*, which is a vertex coloring such that all the vertices in each edge have distinct colors. In the case of a graph, both notions coincide with the notion of a *proper* coloring, which is a vertex coloring such that the endpoints of each edge have distinct colors.

In their 2012 study of the property testing of boolean functions, Blais, Weinstein and Yoshida (BWY) [1] introduced a new kind of vertex coloring that generalizes both weak and strong colorings. They call this notion a *semi-strong* coloring.

Definition 1 ([1] Semi-Strong Coloring, Chromatic Number). For a fixed $c \ge 2$, a c-strong coloring of the hypergraph G is an assignment of colors to its vertices such that each edge e of G contains vertices with at least $\min\{c, |e|\}$ distinct colors. The c-strong chromatic number of G, denoted by $\chi(G, c)$, is the minimum number of colors required to c-strong color G.

This paper focuses on the semi-strong coloring of intersecting hypergraphs. A hypergraph is *t-intersecting* if the intersection of any two of its edges contains at least *t* vertices.

Definition 2 ([1] Chromatic Number of Intersecting Hypergraphs). Given two integers $t \ge 0$ and $c \ge 2$, the *c*-strong chromatic number of *t*-intersecting hypergraphs, denoted by $\chi(t,c)$, is the minimum number of colors that suffice to *c*-strong color any *t*-intersecting hypergraph. In other words,

$$\chi(t,c) = \max_{G \text{ is } t\text{-intersecting}} \chi(G,c).$$

If such a maximum does not exist, we write $\chi(t,c) = \infty$.

If $\chi(t,c) = \infty$, it is of interest to know how the c-strong chromatic number grows as the size of the hypergraph increases.

Definition 3. Given integers $t \ge 0$, $c \ge 2$ and $n \ge 0$, define $\chi(t, c, n)$ to be the minimum number of colors that suffice to c-strong color any t-intersecting hypergraph of size at most n. That is,

$$\chi(t, c, n) = \max_{\substack{G \text{ is } t\text{-intersecting,} \\ |G| < n}} \chi(G, c).$$

Note that

$$\chi(t,c) = \lim_{n \to \infty} \chi(t,c,n).$$

We first restate the general bounds on $\chi(t,c)$ given in [1] (e is the base of the natural logarithm).

Proposition 1.1 ([1]). For any c > 2,

$$\chi(t,c) = \infty \quad \text{for all } t \le c - 2,$$

$$\chi(c-1,c) \ge 2c - 1,$$

$$\sqrt{c}e^c \ge \chi(t,c) \ge 2c - 2 \quad \text{for all } t \ge c,$$

$$\chi(t,c) \le 2c^2 \quad \text{for all } t \ge 2c.$$

The authors of [1] further conjecture that both lower bounds are tight.

Conjecture 1.2 (BWY). For any $c \ge 2$,

$$\chi(c-1,c) = 2c - 1,$$

$$\chi(t,c) = 2c - 2 \quad \text{for all } t > c.$$

We remark that $\chi(c-1,c)$ is not even known to be finite for any $c \ge 3$. Alon [2] has recently given better upper bounds on $\chi(t,c)$ for large t. In particular, Alon proved that $\chi(t,c)$ is linear in c for $t \ge 2c$, improving the previous result of BWY [1].

$$\chi(t, c) \le 2c - 1$$
 for all $t \ge 2c^2$, $\chi(t, c) = O(c)$ for all $t > 2c$.

We adopt the following notations from [1] to facilitate the discussion:

$$[n] := \{1, 2, \dots, n\}, \qquad {n \choose k} := \left\{ S \subset [n] \middle| |S| = k \right\}.$$

This paper is mainly concerned with providing evidence for the conjectures of BWY [1]. We first consider the boundary case $\chi(c-1,c)$ that is not even known to be finite, and show that the c-strong chromatic number grows somewhat slowly as the size of a (c-1)-intersecting hypergraph grows. We further show that it is indeed finite in the smallest unknown case, $\chi(2,3)$. We also show that the conjectures are true for shifted hypergraphs.

We first give an upper bound on $\chi(c-1,c,n)$ asymptotically as $n\to\infty$.

Theorem 1.3. For any fixed c > 2, we have

$$\chi(c-1,c,n) = O(\sqrt{n}).$$

In the introductory paragraph of Section 2, we will remark that for any fixed $c \ge 2$, $\chi(t,c,n) = \Theta(n)$ for all $t \le c-2$ and $\chi(t,c,n) = \Theta(1)$ for all $t \ge c$, thus t=c-1 is the only case in which the asymptotic behavior of $\chi(c-1,c,n)$ is interesting. The above result shows that even if $\chi(c-1,c)$ turns out to be infinite, $\chi(c-1,c,n)$ cannot grow very fast.

Next, we provide an upper bound on the value of $\chi(2,3)$, thereby proving the conjecture of [1] that $\chi(c-1,c)$ is finite for the case where c=3.

Theorem 1.4. $\chi(2,3) \leq 21$.

Next, we prove that Conjecture 1.2 is true for *shifted* hypergraphs, which we define as follows.

If the vertices of a hypergraph G = (V, E) are identified with the set [n], where n = |V|, define a partial ordering on the edges by

$${a_1,\ldots,a_k} \leq {b_1,\ldots,b_k}$$

if $a_i \le b_i$ for all i, where $a = \{a_1 < \dots < a_k\}$ and $b = \{b_1 < \dots < b_k\} \in E$ are edges. A t-intersecting hypergraph G = (V, E) with vertex set [n] is said to be *shifted* if for all $e \in E$ and $e' \subset V$ with $e' \le e$, we have $e' \in E$.

Shifted intersecting hypergraphs are the key objects of study in extremal set theory. They play a central role in the proofs of many important theorems in the field, for instance the Erdös–Ko–Rado theorem and Katona's theorem; see the survey by Frankl [3]. We prove Conjecture 1.2 for shifted intersecting hypergraphs.

Download English Version:

https://daneshyari.com/en/article/4647763

Download Persian Version:

https://daneshyari.com/article/4647763

<u>Daneshyari.com</u>