Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note On the characters of nilpotent association schemes

J. Bagherian

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 18 April 2012 Received in revised form 4 February 2013 Accepted 12 February 2013 Available online 8 March 2013 In this paper we give some properties of the character values of nilpotent commutative association schemes. As a main result, a class of commutative Schurian association schemes is given.

© 2013 Elsevier B.V. All rights reserved.

Keywords: Nilpotent association scheme Character Dual

1. Introduction

Nilpotent association schemes have been defined by Hanaki in [8] as a generalization of nilpotent finite groups. Some properties of the character values of nilpotent association schemes have also been given in [8]. In this paper, we first determine the character values of nilpotent commutative association schemes of class 2. Then we show that if (X, G) is a nilpotent commutative association scheme with the upper central series $\{1_X\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{n-1} \subseteq G_n = G$ such that $\pi(G_i/G_{i-1}), 1 \leq i \leq n$, are distinct sets, then for every faithful irreducible character $\chi \in Irr(G/G_{i-1})$ and $g \in G - G_i$, where $1 \leq i \leq n - 1$, we have $\chi(\sigma_g) = 0$. Moreover, we obtain a condition which a commutative association scheme is equal to the wreath product of some cyclic groups. More precisely, we show that if (X, G) is a nilpotent commutative association scheme of class n such that for every $1 \leq i \leq n$, G_i/G_{i-1} is a group of prime order p_i where p_i , $1 \leq i \leq n$, are distinct prime numbers, then we have $G = G_1 \wr (G_2/G_1) \wr (G_3/G_2) \wr \cdots \wr (G_n/G_{n-1})$.

2. Preliminaries

Let us first state some necessary definitions and notation. For details, we refer the reader to [1,12] for the background of association schemes. Throughout this paper, \mathbb{C} denotes the complex numbers and \mathbb{R} denotes the real numbers.

Definition 2.1. Let *X* be a finite set and *G* be a partition of $X \times X$. Then (X, G) is called an association scheme if the following properties hold:

- (i) $1_X \in G$, where $1_X := \{(x, x) | x \in X\}$.
- (ii) For every $g \in G$, g^* is also in G, where $g^* := \{(x, y) | (y, x) \in g\}$.
- (iii) For every $g, h, k \in G$, there exists a nonnegative integer λ_{ghk} such that for every $(x, y) \in k$, there exist exactly λ_{ghk} elements $z \in X$ with $(x, z) \in g$ and $(z, y) \in h$.

For each $g \in G$, we call $n_g = \lambda_{gg^*1_X}$ the valency of g. For any nonempty subset H of G, put $n_H = \sum_{h \in H} n_h$. We call n_G the order of (X, G).

E-mail address: bagherian@sci.ui.ac.ir.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter @ 2013 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2013.02.006

Let *H* and *K* be nonempty subsets of *G*. We define *HK* to be the set of all elements $t \in G$ such that there exist element $h \in H$ and $k \in K$ with $\lambda_{hkt} \neq 0$. The set *HK* is called the *complex product* of *H* and *K*. If one of the factors in a complex product consists of a single element *g*, then one usually writes *g* for {*g*}. An association scheme (*X*, *G*) is called *commutative* if for all *g*, $h \in G$, gh = hg.

A nonempty subset *H* of *G* is called a *closed subset* if $HH \subseteq H$. A closed subset *H* of *G* is called *strongly normal* if $gHg^* = H$ for any $g \in G$.

Let H be a closed subset of G. For every $h \in H$ we define $xh = \{y \in X | (x, y) \in h\}$. Put $X/H = \{xH|x \in X\}$ and $G/H = \{g^H | g \in G\}$, where $xH = \bigcup_{h \in H} xh$ and $g^H = \{(xH, yH) | y \in xHgH\}$. Then (X/H, G/H) is an association scheme called the *quotient scheme* of (X, G) over H. Note that a closed subset H is strongly normal iff the quotient scheme (X/H, G/H) is a group with respect to the relational product iff $gg^* \subseteq H$, for every $g \in G$.

For each closed subset *H* of *G*, we define $O_{\vartheta}(H) = \{h \in H | n_h = 1\}$, called the *thin radical* of *H*. Note that $O_{\vartheta}(H)$ is a closed subset of *G*. In fact $O_{\vartheta}(H)$ is a group with respect to the relational product. The closed subset *H* is called *thin* if $O_{\vartheta}(H) = H$. A commutative association scheme (*X*, *G*) is called the *nilpotent* association scheme of class *n*, if it has the following sequence of closed subsets:

$$\{1_X\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{n-1} \subseteq G_n = G_n$$

such that for all $1 \le i \le n$, $G_i/G_{i-1} = O_{\vartheta}(G/G_{i-1})$. We call this sequence the *upper central series* of (X, G).

Let (X, G) be an association scheme. For every $g \in G$, let σ_g be the adjacency matrix of g. That is, σ_g is the matrix whose rows and columns are indexed by the elements of X and its (x, y)-entry is 1 if $(x, y) \in g$ and 0 otherwise. Note that for every $h, k \in G, \sigma_h \sigma_k = \sum_{t \in G} \lambda_{hkt} \sigma_t$. For any nonempty subset H of G, we put $\sigma_H := \{\sigma_h | h \in H\}$.

It is known that $\mathbb{C}G = \bigoplus_{g \in G} \mathbb{C}\sigma_g$, the *adjacency algebra* of (X, G), is a semisimple algebra. The set of irreducible characters of *G* is denoted by Irr(*G*).

Let (X, G) be an association scheme and $\chi, \psi \in Irr(G)$. In [5], the character product of χ and ψ is defined by $\chi \psi(\sigma_g) = \frac{1}{n_{\sigma}} \chi(\sigma_g) \psi(\sigma_g)$. It is known that this character product need not be a character in general.

[°] In the following, we deal with the dual of the complex adjacency algebra of a commutative association scheme in the sense of [1]. We refer the reader to [2] for the background of table algebras.

Suppose that $(\mathbb{C}G, \sigma_G)$ is the complex adjacency algebra of a commutative association scheme (X, G), where $\sigma_G = \{\sigma_g | g \in G\}$. Let $\{\varepsilon_{\chi} | \chi \in Irr(G)\}$ be the set of the primitive idempotents of $\mathbb{C}G$. Then from [1, Section 2.5] there are two matrices $P = (p_g(\chi))$ and $Q = (q_{\chi}(g))$ in $Mat_{|X|}(\mathbb{C})$, where $g \in G$ and $\chi \in Irr(G)$, such that PQ = QP = |X|I, where I is the identity matrix in $Mat_{|X|}(\mathbb{C})$, and

$$\sigma_g = \sum_{\chi \in Irr(G)} p_g(\chi) \varepsilon_{\chi}$$
 and $\varepsilon_{\chi} = \frac{1}{|X|} \sum_{g \in G} q_{\chi}(g) \sigma_g$.

The dual of $(\mathbb{C}G, \sigma_G)$ in the sense of [1] is as follows: with each linear representation $\Delta_{\chi} : \sigma_g \mapsto p_g(\chi)$, we associate the linear mapping $\Delta_{\chi}^* : \sigma_g \mapsto q_{\chi}(g) = \frac{m_{\chi\chi}(\sigma_{g^*})}{n_g}$. Since the matrix $Q = (q_{\chi}(g))$ is non-singular, the set $B = \{\Delta_{\chi}^* : \chi \in \operatorname{Irr}(G)\}$ is linearly independent and so forms a base of the set of all linear mappings A of $\mathbb{C}G$ into \mathbb{C} . From [1, Theorems 5.9 and 3.8] the pair (A, B) is a table algebra (see [2]) with the identity $1_A = \Delta_{\rho}^*$, where $\rho \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}G, \mathbb{C})$ such that $\rho(\sigma_g) = n_g$, and involutory automorphism * which maps Δ_{χ}^* to Δ_{χ}^* , where $\overline{\chi}$ is the complex conjugate to χ . The table algebra (A, B) is called the *dual* of the association scheme (X, G). Moreover, for every $\chi, \psi \in \operatorname{Irr}(G)$ we have

$$\Delta_{\chi}^* \Delta_{\psi}^* = \sum_{\Delta_{\varphi}^* \in B} q_{\chi\psi}^{\varphi} \Delta_{\varphi}^*$$

where the structure constants $q_{\chi\psi}^{\varphi}, \varphi \in Irr(G)$ are nonnegative real numbers. For every $\chi, \psi \in Irr(G)$, put

$$\operatorname{Supp}(\Delta_{\chi}^* \Delta_{\psi}^*) = \{\Delta_{\varphi}^* \in B | q_{\chi\psi}^{\varphi} \neq 0\}.$$

A nonempty subset *N* of *B* is called a *closed subset* if for every Δ_{χ}^* , $\Delta_{\psi}^* \in N$ we have $\text{Supp}(\Delta_{\chi}^* \Delta_{\psi}^*) \subseteq N$. Let (*A*, *B*) be the dual of ($\mathbb{C}G$, σ_G) and let *H* be a closed subset of *G*. Put

 $\operatorname{Ker}(H) = \{\Delta_{\chi}^* \in B \mid \chi(\sigma_g) = n_g, \text{ for every } g \in H\}.$

Then from [2, Theorems 1 and 2], Ker(H) is a closed subset of B and

$$\widehat{H} \simeq B/\operatorname{Ker}(H)$$

where \widehat{H} is the dual of $\mathbb{C}H$.

3. Main results

In this section we assume that (X, G) is a commutative association scheme. We first give some properties of the character values of nilpotent association schemes of class 2.

Download English Version:

https://daneshyari.com/en/article/4647769

Download Persian Version:

https://daneshyari.com/article/4647769

Daneshyari.com