Note

Packing trees into complete bipartite graphs

Susan Hollingsworth

Department of Mathematics, Edgewood College, Madison, WI 53711, United States

A R TICLE INFO

Article history:

Received 6 January 2010
Received in revised form 15 January 2013
Accepted 19 January 2013
Available online 11 February 2013

Keywords:

Trees
Packing
Bipartite
Balanced

Abstract

In 1976, Gyárfás and Lehel conjectured that any trees T_{2}, \ldots, T_{n} with 2 through n vertices pack into K_{n}, the complete graph on n vertices, that is, the trees T_{2}, \ldots, T_{n} appear as edgedisjoint subgraphs of K_{n}. This conjecture is still unresolved.

We examine an analogous conjecture for packing trees into complete bipartite graphs. Let $T_{a, a}$ denote a tree whose partite sets both have size a, which we call a balanced tree. We conjecture that any trees $T_{1,1}, \ldots, T_{n, n}$ pack into $K_{n, n}$, the complete bipartite graph on $2 n$ vertices.

We begin by establishing that if a and n are integers with $n \geq 3$ and $a<\lfloor\sqrt{7 / 18} n\rfloor$, then any balanced trees $T_{1,1}, \ldots, T_{a, a}$ pack into $K_{n, n}$.

We also show that if any degree sequence for the first partite set is specified for each tree, then there exist balanced trees $T_{1,1}, \ldots, T_{n, n}$ with these vertex degrees that pack into $K_{n, n}$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The graphs G_{1}, \ldots, G_{k} pack into a graph H if G_{1}, \ldots, G_{k} appear as edge-disjoint subgraphs of H. In 1976, Gyárfás and Lehel [6] conjectured that any trees T_{2}, \ldots, T_{n} with 2 through n vertices pack into K_{n}, the complete graph on n vertices. This conjecture is still unresolved.

A number of partial results related to this conjecture have been shown. For example, Bollobás [1] showed that T_{2}, \ldots, T_{r} pack into K_{n} if $r \leq n / \sqrt{2}$. Later, Hobbs et al. [2] showed that any three trees T_{n}, T_{n-1}, T_{n-2} pack into K_{n}.

In addition, variations on the original conjecture have been examined, including packings into complete bipartite graphs: several such variations are summarized in [5]. In [2], Hobbs et al. conjectured that T_{2}, \ldots, T_{n} pack into the complete bipartite graph $K_{n-1,\lceil n / 2\rceil}$.

For positive integers a and b, let $T_{a, b}$ denote a tree with a bipartition into sets of sizes a and b. If $a=b$, then the sets of the bipartition have equal size; in this case we say that the tree is balanced.

Observe that $T_{a, a}$ has $2 a-1$ edges. The observation that $\sum_{a=1}^{n}(2 a-1)=n^{2}$, exactly the number of edges in the complete bipartite graph $K_{n, n}$, leads to the following conjecture, an analogue for bipartite graphs of the Gyárfás-Lehel conjecture.

Conjecture 1.1. Any balanced trees $T_{1,1}, \ldots, T_{n, n}$ pack into $K_{n, n}$.
For small trees, the conjecture is straightforward: up to isomorphism, there are only three balanced trees on six vertices and eight balanced trees on eight vertices. It can be quickly verified that Conjecture 1.1 holds for $n \leq 4$.

In Section 2 we prove the bipartite analogue of the result of Bollobás [1] concerning lists of small trees.
Theorem 1.2. If a and n are integers with $n \geq 3$ and $a<\lfloor\sqrt{7 / 18} n\rfloor$, then any balanced trees $T_{1,1}, \ldots, T_{a, a}$ pack into $K_{n, n}$.

[^0]In Section 3 we prove that if any degree sequence for the first partite set is specified for each tree, then there exist balanced trees $T_{1,1}, \ldots, T_{n, n}$ with these vertex degrees that pack into $K_{n, n}$.

Theorem 1.3. Fix $n \in \mathbb{N}$. Given, for each $1 \leq k \leq n$, positive integers $a_{1}^{k}, \ldots, a_{k}^{k}$ with $\sum_{i=1}^{k} a_{i}^{k}=2 k-1$, there exist balanced trees $T_{1,1}, \ldots, T_{n, n}$ such that

1. for each k, the vertices in the first partite set of $T_{k, k}$ have degrees $a_{1}^{k}, \ldots, a_{k}^{k}$;
2. the trees $T_{1,1}, \ldots, T_{n, n}$ pack into $K_{n, n}$.

2. A lemma of Yuster and packing largest and smallest trees

We recall the following lemma due to Yuster [7].
Lemma 2.1 (Yuster). Let H be a bipartite graph with partite sets H_{1} and H_{2} of sizes h_{1} and h_{2}, respectively, with $h_{1} \leq h_{2}$. Let T be a tree whose partite sets have sizes k_{1} and k_{2}. If $k_{1} \leq h_{1}, k_{2} \leq h_{2}$ and $|E(H)| \geq k_{2} h_{1}+k_{1} h_{2}+k_{1}+k_{2}-h_{1}-h_{2}-k_{1} k_{2}$, then H contains a subgraph isomorphic to T.

In Yuster's proof of this result, the subgraph isomorphic to T has k_{1} vertices in the partite set of size h_{1} and k_{2} vertices in the partite set of size h_{2}.

Applying Yuster's lemma in the case where T is a balanced tree on $2 k$ vertices, the restriction becomes

$$
|E(H)| \geq\left(h_{1}+h_{2}\right)(k-1)+2 k-k^{2} .
$$

The following is an immediate consequence.
Corollary 2.2. Let H be a subgraph of $K_{n, n}$, and let $k \leq n$. If $|E(H)| \geq 2 n(k-1)+2 k-k^{2}$, then H contains every balanced tree on $2 k$ vertices.

This has consequences for packings of balanced trees, as we shall see in the next section.
We are interested in packing balanced trees $T_{1,1}, \ldots, T_{n, n}$ into $K_{n, n}$. We first consider what happens if we just start at the end of the list and start packing trees. Observe that any two balanced trees $T_{n, n}$ and $T_{n-1, n-1}$ pack into $K_{n, n}$: in the biadjacency matrix of $K_{n, n}$, the edges of the tree $T_{n, n}$ can be placed on or below the main diagonal, and the edges of $T_{n-1, n-1}$ can be placed above the main diagonal.

If we hope to pack in more trees, then we cannot arbitrarily place $T_{n, n}$ in the lower triangle and $T_{n-1, n-1}$ in the upper triangle. Consider the double-star, the balanced tree with $2 n$ vertices having two vertices of degree n and $2 n-2$ vertices of degree 1 :

$$
\left[\begin{array}{ccccc}
5 & 4 & \cdot & \cdot & 4 \\
\cdot & 5 & 4 & \cdot & 4 \\
\cdot & \cdot & 5 & 4 & 4 \\
5 & 5 & \cdot & 5 & 4 \\
\cdot & 5 & 5 & \cdot & 5
\end{array}\right]
$$

Here we have two balanced trees, one with 10 vertices and the other with 8 , packed into $K_{5,5}$ in such a way that the double-star on six vertices will not fit. The double-star requires an open position for its central edge that has 2 other open positions in its row and in its column.

Not surprisingly, we can achieve somewhat more success by beginning with the smallest trees, in a manner modeled after Yuster's results for non-balanced trees [7].

Theorem 1.2. If a and n are integers with $n \geq 3$ and $a<\lfloor\sqrt{7 / 18} n\rfloor$, then any balanced trees $T_{1,1}, \ldots, T_{a, a}$ pack into $K_{n, n}$.
Proof. Certainly $K_{n, n}$ contains a copy of the largest tree $T_{a, a}$. Assume that $T_{a, a}, T_{a-1, a-1}, \ldots, T_{k+1, k+1}$ have already been packed into $K_{n, n}$ for some k with $1<k<a$. Let H be the spanning subgraph of $K_{n, n}$ that contains all the edges not yet used in the packing. We have

$$
\begin{aligned}
|E(H)| & =n^{2}-((2 a-1)+(2 a-3)+\cdots+(2 k-1)) \\
& =n^{2}-a^{2}+(k-1)^{2}
\end{aligned}
$$

By Corollary 2.2 , H contains the next tree $T_{k, k}$ if $n^{2}-a^{2}+(k-1)^{2}>2 k-2 n+2 k n-k^{2}$; that is, if $n^{2}-a^{2}+2 k^{2}-4 k+$ $2 n-2 k n+1>0$. The function $f(k)=n^{2}-a^{2}+2 k^{2}-4 k+2 n-2 k n+1$ is minimized when $2 k=2+n$, at which point $f(k)=n^{2}-2 a^{2}-2$. Now, if $a<\lfloor\sqrt{7 / 18} n\rfloor$, then

$$
n^{2}-2 a^{2}-2>n^{2}-2(7 / 18) n^{2}-2=(2 / 9) n^{2}-2 .
$$

Since $n \geq 3$, we have $(2 / 9) n^{2}-2 \geq 0$, so $f(k)>0$, as required.

https://daneshyari.com/en/article/4647800

Download Persian Version:
https://daneshyari.com/article/4647800

Daneshyari.com

[^0]: E-mail address: shollingsworth@edgewood.edu.
 0012-365X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2013.01.016

