Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Strong edge-coloring for cubic Halin graphs

Gerard Jennhwa Chang^{a,b,c}, Daphne Der-Fen Liu^{d,*}

^a Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

^b Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

^c National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan

^d Department of Mathematics, California State University, Los Angeles, USA

ARTICLE INFO

Article history: Received 3 November 2011 Received in revised form 11 January 2012 Accepted 12 January 2012 Available online 7 February 2012

Keywords: Strong edge-coloring Strong chromatic index Halin graphs Cubic graphs

1. Introduction

ABSTRACT

A strong edge-coloring of a graph *G* is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the *strong chromatic index* of *G*. Lih and Liu (2011) [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open problem to determine which of such graphs have strong chromatic index 6. Our article is devoted to this open problem. In particular, we disprove a conjecture of Shiu et al. (2006) [18] that the strong chromatic index of a cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6.

© 2012 Elsevier B.V. All rights reserved.

The coloring problem considered in this article has restrictions on edges within distance two apart. The *distance* between two edges e and e' in a graph is the minimum k for which there is a sequence e_0, e_1, \ldots, e_k of distinct edges such that $e = e_0$, $e' = e_k$, and e_{i-1} shares an end vertex with e_i for $1 \le i \le k$. A strong edge-coloring of a graph is a function that assigns to each edge a color such that any two edges within distance two apart must receive different colors. A strong *k*-edge-coloring is a strong edge-coloring using at most k colors. The strong chromatic index of a graph G, denoted by $\chi'_s(G)$, is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [8,9] for cubic planar graphs. A trivial upper bound is that $\chi'_s(G) \leq 2\Delta^2 - 2\Delta + 1$ for any graph *G* of maximum degree Δ . Fouquet and Jolivet [8] established a Brooks type upper bound $\chi'_s(G) \leq 2\Delta^2 - 2\Delta$, which is not true only for $G = C_5$ as pointed out by Shiu and Tam [19]. The following conjecture was posed by Erdős and Nešetřil [5,6] and revised by Faudree et al. [7].

Conjecture 1. For any graph *G* of maximum degree Δ ,

 $\chi_{s}'(G) \leq \begin{cases} \frac{5}{4}\Delta^{2}, & \text{if } \Delta \text{ is even}; \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{if } \Delta \text{ is odd}. \end{cases}$

Faudree et al. [7] also asked whether $\chi'_{s}(G) \leq 9$ if *G* is cubic planar. If this upper bound is proved to be true, it would be best possible. For graphs with maximum degree $\Delta = 3$, Conjecture 1 was verified by Andersen [1] and by Horák et al. [12]

* Corresponding author. E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), dliu@calstatela.edu (D.D.-F. Liu).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter s 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.01.014

independently. For $\Delta = 4$, while Conjecture 1 says that $\chi'_s(G) \le 20$, Horák [11] obtained $\chi'_s(G) \le 23$ and Cranston [4] proved $\chi'_s(G) \le 22$. In addition to Conjecture 1, other aspects of strong edge-coloring have also been studied extensively (cf. [1–3,10,13–18,20]).

The main theme of this paper is to study strong edge-coloring for the following planar graphs. A Halin graph $G = T \cup C$ is a plane graph consisting of a plane embedding of a tree *T* each of whose interior vertex has degree at least 3, and a cycle *C* connecting the leaves (vertices of degree 1) of *T* such that *C* is the boundary of the exterior face. The tree *T* and the cycle *C* are called the *characteristic tree* and the *adjoint cycle* of *G*, respectively. Strong chromatic index for Halin graphs was first considered by Shiu et al. [18] and then studied in [19,13,14].

A *caterpillar* is a tree whose removal of leaves results in a path called the *spine* of the caterpillar. For $k \ge 1$, let \mathcal{G}_k be the set of all cubic Halin graphs whose characteristic trees are caterpillars with k + 2 leaves. For a graph $G = T \cup C$ in \mathcal{G}_k , let $P: v_1, v_2, \ldots, v_k$ be the spine of T and each v_i is adjacent to a leaf u_i for $1 \le i \le k$ with v_1 (resp. v_k) adjacent to one more leaf $u_0 = v_0$ (resp. $u_{k+1} = v_{k+1}$). We draw G on the plane by putting the path v_0Pv_{k+1} horizontally in the middle, and the pending edges (leaf edges) $v_iu_i, 1 \le i \le k$, by either up or down edges vertically to P. See Fig. 1 for an example of \mathcal{G}_8 .

From this drawing, we associate *G* with a list of positive integers $(n_1, n_2, ..., n_r)$, where n_i is the number of maximum consecutive up or down edges, starting from the leftmost to the rightmost on *P*. We use $G_{n_1,n_2,...,n_r}$ to denote this graph. For instance, the graph in Fig. 1 is $G_{2,3,3}$. Notice that $n_1 + n_2 + \cdots + n_r = k$. For a special case when these pending edges are all in the same direction (up or down), the graph G_k is called the *necklace* and is denoted by Ne_k in [18]. Notice that G_k is the only graph in g_k for $k \le 3$.

Observation 1. $G_{n_1,n_2,...,n_r} \cong G_{n_r,...,n_2,n_1}$.

Observation 2. $G_{n_1,n_2,...,n_r,1} \cong G_{n_1,n_2,...,n_r+1}$.

It is easy to see that $\chi'_{s}(G) \geq 6$ for any $G \in \mathcal{G}_{k}, k \geq 1$. Shiu et al. [18] obtained the following results.

•

$$\chi'_{s}(G_{k}) = \begin{cases} 9, & k = 2; \\ 8, & k = 4; \\ 7, & k \text{ is even and } k \ge 6; \\ 6, & k \text{ is odd.} \end{cases}$$

- If $G \in \mathcal{G}_k$ with $k \ge 4$, then $6 \le \chi'_s(G) \le 8$.
- If *G* is a cubic Halin graph, then $6 \le \chi'_s(G) \le 9$.

Moreover, the authors [18] raised the following conjectures.

Conjecture 2. If $G \in \mathcal{G}_k$ with $k \ge 5$, then $\chi'_s(G) \le 7$.

Conjecture 3. If $G \in \mathcal{G}_k$ with odd $k \ge 5$, then $\chi'_s(G) = 6$.

Conjecture 4. If $G = T \cup C$ is a Halin graph, then $\chi'_s(G) \leq \chi'_s(T) + 4$.

Faudree et al. [7] proved, for any tree *T*, it holds that $\chi'_s(T) = \max_{uv \in E(T)}(\deg(u) + \deg(v) - 1)$. Conjecture 4 was confirmed by Lai et al. [13], who proved a stronger result that $\chi'_s(G) \le \chi'_s(T) + 3$ for any Halin graph $G = T \cup C$ other than G_2 and wheels W_n with $n \ne 0 \pmod{3}$, where $W_n = K_{1,n} \cup C_n$. Note that $\chi'_s(W_5) = \chi'_s(K_{1,5}) + 5$, and $\chi'_s(G) = \chi'_s(T) + 4$ for $G = G_2$ or $G = W_n$ with $n \ne 0 \pmod{3}$ and $n \ne 5$.

Conjecture 2 was confirmed by Lih and Liu [14], who proved a more general result that $\chi'_{s}(G) \leq 7$ is true for any cubic Halin graph other than G_{2} and G_{4} . Hence, strong chromatic index for any cubic Halin graph $G \neq G_{2}$, G_{4} is either 6 or 7.

It remains open to determine the cubic Halin graphs *G* with $\chi'_s(G) = 6$ (or the ones with $\chi'_s(G) = 7$). Our aim is to investigate this problem. In particular, we establish methods that can be used to study the graphs \mathcal{G}_k . As a result, we discover counterexamples to Conjecture 3. We prove that for any $k \ge 7$, there exists graph $G \in \mathcal{G}_k$ with $\chi'_s(G) = 7$, and for any $k \ne 2$, 4, there exists $G \in \mathcal{G}_k$ (other than necklaces) with $\chi'_s(G) = 6$. In Section 4, we determine the value of $\chi'_s(G)$ for some special families of graphs *G* in \mathcal{G}_k .

2. Cubic Halin graphs *G* with $\chi'_{s}(G) = 6$

This section gives some cubic Halin graphs with strong chromatic index 6. We begin with the development of several general transformation theorems for Halin graphs.

For a positive integer r, an r-tail of a tree T is a path $P_r: v_1, v_2, \ldots, v_r, v_{r+1}$ in which v_1 is not a leaf but all vertices in $L_i = \{u \notin P: uv_i \in E(T)\}$ are leaves for $1 \le i \le r$. For integer s < r, cutting P_s from T means deleting the vertices $\{v_1, v_2, \ldots, v_{s-1}\} \cup_{1 \le i \le s} L_i$ from T, which results in a tree denoted by $T \ominus P_s$. Notice that v_s becomes a leaf adjacent to v_{s+1} in $T \ominus P_s$.

Download English Version:

https://daneshyari.com/en/article/4647818

Download Persian Version:

https://daneshyari.com/article/4647818

Daneshyari.com