Strong edge-coloring for cubic Halin graphs

Gerard Jennhwa Chang ${ }^{\text {a,b,c }}$, Daphne Der-Fen Liu ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
${ }^{\mathrm{b}}$ Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
${ }^{\text {c }}$ National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan
${ }^{\text {d }}$ Department of Mathematics, California State University, Los Angeles, USA

ARTICLE INFO

Article history:

Received 3 November 2011
Received in revised form 11 January 2012
Accepted 12 January 2012
Available online 7 February 2012

Keywords:

Strong edge-coloring
Strong chromatic index
Halin graphs
Cubic graphs

Abstract

A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu (2011) [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open problem to determine which of such graphs have strong chromatic index 6 . Our article is devoted to this open problem. In particular, we disprove a conjecture of Shiu et al. (2006) [18] that the strong chromatic index of a cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6 .

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The coloring problem considered in this article has restrictions on edges within distance two apart. The distance between two edges e and e^{\prime} in a graph is the minimum k for which there is a sequence $e_{0}, e_{1}, \ldots, e_{k}$ of distinct edges such that $e=e_{0}$, $e^{\prime}=e_{k}$, and e_{i-1} shares an end vertex with e_{i} for $1 \leq i \leq k$. A strong edge-coloring of a graph is a function that assigns to each edge a color such that any two edges within distance two apart must receive different colors. A strong k-edge-coloring is a strong edge-coloring using at most k colors. The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet $[8,9]$ for cubic planar graphs. A trivial upper bound is that $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta+1$ for any graph G of maximum degree Δ. Fouquet and Jolivet [8] established a Brooks type upper bound $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta$, which is not true only for $G=C_{5}$ as pointed out by Shiu and Tam [19]. The following conjecture was posed by Erdős and Nešetřil [5,6] and revised by Faudree et al. [7].

Conjecture 1. For any graph G of maximum degree Δ,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { if } \Delta \text { is odd }\end{cases}
$$

Faudree et al. [7] also asked whether $\chi_{s}^{\prime}(G) \leq 9$ if G is cubic planar. If this upper bound is proved to be true, it would be best possible. For graphs with maximum degree $\Delta=3$, Conjecture 1 was verified by Andersen [1] and by Horák et al. [12]

[^0]independently. For $\Delta=4$, while Conjecture 1 says that $\chi_{s}^{\prime}(G) \leq 20$, Horák [11] obtained $\chi_{s}^{\prime}(G) \leq 23$ and Cranston [4] proved $\chi_{s}^{\prime}(G) \leq 22$. In addition to Conjecture 1 , other aspects of strong edge-coloring have also been studied extensively (cf. [1-3,10,13-18,20]).

The main theme of this paper is to study strong edge-coloring for the following planar graphs. A Halin graph $G=T \cup C$ is a plane graph consisting of a plane embedding of a tree T each of whose interior vertex has degree at least 3 , and a cycle C connecting the leaves (vertices of degree 1) of T such that C is the boundary of the exterior face. The tree T and the cycle C are called the characteristic tree and the adjoint cycle of G, respectively. Strong chromatic index for Halin graphs was first considered by Shiu et al. [18] and then studied in [19,13,14].

A caterpillar is a tree whose removal of leaves results in a path called the spine of the caterpillar. For $k \geq 1$, let \mathcal{G}_{k} be the set of all cubic Halin graphs whose characteristic trees are caterpillars with $k+2$ leaves. For a graph $G=T \cup C$ in g_{k}, let $P: v_{1}, v_{2}, \ldots, v_{k}$ be the spine of T and each v_{i} is adjacent to a leaf u_{i} for $1 \leq i \leq k$ with v_{1} (resp. v_{k}) adjacent to one more leaf $u_{0}=v_{0}$ (resp. $u_{k+1}=v_{k+1}$). We draw G on the plane by putting the path $v_{0} P v_{k+1}$ horizontally in the middle, and the pending edges (leaf edges) $v_{i} u_{i}, 1 \leq i \leq k$, by either up or down edges vertically to P. See Fig. 1 for an example of g_{8}.

From this drawing, we associate G with a list of positive integers $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$, where n_{i} is the number of maximum consecutive up or down edges, starting from the leftmost to the rightmost on P. We use $G_{n_{1}, n_{2}, \ldots, n_{r}}$ to denote this graph. For instance, the graph in Fig. 1 is $G_{2,3,3}$. Notice that $n_{1}+n_{2}+\cdots+n_{r}=k$. For a special case when these pending edges are all in the same direction (up or down), the graph G_{k} is called the necklace and is denoted by $N e_{k}$ in [18]. Notice that G_{k} is the only graph in g_{k} for $k \leq 3$.

Observation 1. $G_{n_{1}, n_{2}, \ldots, n_{r}} \cong G_{n_{r}, \ldots, n_{2}, n_{1}}$.
Observation 2. $G_{n_{1}, n_{2}, \ldots, n_{r}, 1} \cong G_{n_{1}, n_{2}, \ldots, n_{r}+1}$.
It is easy to see that $\chi_{s}^{\prime}(G) \geq 6$ for any $G \in \mathcal{G}_{k}, k \geq 1$. Shiu et al. [18] obtained the following results.
\bullet

$$
\chi_{s}^{\prime}\left(G_{k}\right)= \begin{cases}9, & k=2 \\ 8, & k=4 \\ 7, & k \text { is even and } k \geq 6 \\ 6, & k \text { is odd }\end{cases}
$$

- If $G \in \mathcal{G}_{k}$ with $k \geq 4$, then $6 \leq \chi_{s}^{\prime}(G) \leq 8$.
- If G is a cubic Halin graph, then $6 \leq \chi_{s}^{\prime}(G) \leq 9$.

Moreover, the authors [18] raised the following conjectures.
Conjecture 2. If $G \in \mathcal{g}_{k}$ with $k \geq 5$, then $\chi_{s}^{\prime}(G) \leq 7$.

Conjecture 3. If $G \in \mathcal{G}_{k}$ with odd $k \geq 5$, then $\chi_{s}^{\prime}(G)=6$.
Conjecture 4. If $G=T \cup C$ is a Halin graph, then $\chi_{s}^{\prime}(G) \leq \chi_{s}^{\prime}(T)+4$.
Faudree et al. [7] proved, for any tree T, it holds that $\chi_{s}^{\prime}(T)=\max _{u v \in E(T)}(\operatorname{deg}(u)+\operatorname{deg}(v)-1)$. Conjecture 4 was confirmed by Lai et al. [13], who proved a stronger result that $\chi_{s}^{\prime}(G) \leq \chi_{s}^{\prime}(T)+3$ for any Halin graph $G=T \cup C$ other than G_{2} and wheels W_{n} with $n \not \equiv 0(\bmod 3)$, where $W_{n}=K_{1, n} \cup C_{n}$. Note that $\chi_{s}^{\prime}\left(W_{5}\right)=\chi_{s}^{\prime}\left(K_{1,5}\right)+5$, and $\chi_{s}^{\prime}(G)=\chi_{s}^{\prime}(T)+4$ for $G=G_{2}$ or $G=W_{n}$ with $n \not \equiv 0(\bmod 3)$ and $n \neq 5$.

Conjecture 2 was confirmed by Lih and Liu [14], who proved a more general result that $\chi_{s}^{\prime}(G) \leq 7$ is true for any cubic Halin graph other than G_{2} and G_{4}. Hence, strong chromatic index for any cubic Halin graph $G \neq G_{2}, G_{4}$ is either 6 or 7 .

It remains open to determine the cubic Halin graphs G with $\chi_{s}^{\prime}(G)=6$ (or the ones with $\chi_{s}^{\prime}(G)=7$). Our aim is to investigate this problem. In particular, we establish methods that can be used to study the graphs \mathcal{g}_{k}. As a result, we discover counterexamples to Conjecture 3. We prove that for any $k \geq 7$, there exists graph $G \in \mathcal{g}_{k}$ with $\chi_{s}^{\prime}(G)=7$, and for any $k \neq 2,4$, there exists $G \in g_{k}$ (other than necklaces) with $\chi_{s}^{\prime}(G)=6$. In Section 4, we determine the value of $\chi_{s}^{\prime}(G)$ for some special families of graphs G in \mathcal{g}_{k}.

2. Cubic Halin graphs G with $\chi_{s}^{\prime}(G)=6$

This section gives some cubic Halin graphs with strong chromatic index 6 . We begin with the development of several general transformation theorems for Halin graphs.

For a positive integer r, an r-tail of a tree T is a path $P_{r}: v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}$ in which v_{1} is not a leaf but all vertices in $L_{i}=\left\{u \notin P: u v_{i} \in E(T)\right\}$ are leaves for $1 \leq i \leq r$. For integer $s<r$, cutting P_{s} from T means deleting the vertices $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\} \cup_{1 \leq i \leq s} L_{i}$ from T, which results in a tree denoted by $T \ominus P_{s}$. Notice that v_{s} becomes a leaf adjacent to v_{s+1} in $T \ominus P_{s}$.

https://daneshyari.com/en/article/4647818

Download Persian Version:

https://daneshyari.com/article/4647818

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), dliu@calstatela.edu (D.D.-F. Liu).

